

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Design, Modeling, and Optimization of Power Electronics Systems Virtual Prototyping

Andrija Stupar, Andreas Müsing

Outline

- State of "Virtual Prototyping" today: Problems
- Solution: PE Design Suite with GeckoCIRCUITS as the core
- Comparison via design example:
 - Analytical approach to converter design and optimization
 - Simulation approach and its advantages
- Modeling Different Design Domains: Electrical, Magnetic, Thermal: Modeling Everything as a Circuit?
- Coupling Domains: Model Reduction and Simplification

Motivation

- Power Electronics Engineer must consider many factors when making design decisions:
 - System performance & Efficiency
 - Power Density (Volume, size) & Weight
 - Cost, Reliability, etc.
- Must deal with Thermal & Electromagnetic issues
- Many choices to make:
 - Topology?
 - Control/modulation scheme?
 - Components?

Need <u>Virtual Prototyping</u>: evaluate on a computer, relatively quickly, a large number of design possibilities, and gain insight into relationships between the different aspects of the design problem.

State of "Virtual Prototyping" Today

- Generally speaking, the theory to do virtual prototyping already exists
- It seems that we have software tools for almost all necessary domains:
 - Very detailed and precise circuit simulators (e.g. SPICE, etc.)
 - Very powerful electromagnetic simulators (e.g. Maxwell)
 - 3D-FEM simulators for thermal design (e.g. Icepak, COMSOL)
- We have a large body of knowledge on the behaviour of power electronics (PE) and the necessary sub-components
- So what is the problem?
 - Tedious: it takes very long to set up all relevant models
 - Tools not made specifically for PE: large skill set needed
 - Detailed simulation slow; not easy to transfer relevant data
 - **Result:** Engineer concludes not worth the effort, does limited simulation and calculations, relies on past designs, experience and actual prototyping
- Solution: Create a software package that has relevant models and simulators, is fast, and "fits well" with the knowledge of PE engineers

Optimization Example: Analytical Approach

Phase-shift PWM DC-DC Converter for Telecom Power Supplies (5 kW)

Papers: Badstuebner, Biela, and Kolar, APEC 2010 and IPEC 2010

Optimization Example: Analytical Approach

- How long does this take, start to finish? (not incl. prototype construction) •
 - Derive and setup all models: 2-4 months
 - Execute optimization procedure: 1-2 weeks
- Great deal of effort required
- Want to try different topology?
- Change operating mode?
- Change control/modulation scheme?
- Error in deriving analytical models?
- Change of components, geometries? •

- Start again, from beginning
- Start again
- Start again
- Start again
- New loss models needed
- The need for a better, more general approach is clear

Optimization by Simulation: Requirements

• Replace as much as possible analytical work by numerical simulation:

Coupling of Physical Domains

Is this a realistic approach for a PE Design?

Multi-Domain Simulation in Power Electronics

- PE Engineer challenged with different domains
- Circuit Simulator should be "central part" of design toolbox
- Direct tool interconnection not realistic
- \rightarrow Consider different abstraction levels (model order reduction)

Circuit interpretation possible?

- Power Circuit
- Electromagnetics
- Thermal
- Magnetics

PE Circuit Simulator: GeckoCIRCUITS

• Model of converter for simulation

Setting Model Parameters in GeckoCIRCUITS

• For virtual prototyping and optimization, must be able to simulate, change system parameters, simulate again, change parameters, simulate...

GeckoSCRIPT: model manipulation and simulation control scripting environment within GeckoCIRCUITS Tutorial for GeckoSCRIPT available on GeckoCIRCUITS CD

Extract relevant information from simulation

• Need: RMS, avg, min/max values of currents, voltages, FFT of signals...

RMS, etc. values

GeckoCIRCUITS: Steady-State Detection

- Usually interested what happens during steady-state operation
- GeckoSCRIPT provides functions for periodic steady-state operation: simulate until steady-state and stop, then extract parameters

Currently (v.1.5) works for PWM DC-DC systems - Development ongoing to cover other types of systems

All analytical analysis of power converter circuit has been replaced by simulation!

Loss Modeling: Semiconductors

- Rather than simulate semiconductors in great detail to extract all losses from parasitics, etc. (too slow), have functionally correct model for PE circuits for fast simulation
- Use electrical simulation results to calculate losses based on loss models
 > data entered from data sheet curves or experimental measurements

Loss Modeling: Passives

• Current GeckoCIRCUITS version (1.5): still must work-out and enter loss models for inductors, transformers, capacitors "by hand" (standard models available in literature for most common arrangements)

Code optimization loop here

Comparison: Analytic vs. Simulation

• Optimum system, switching frequency 16 kHz

Efficiency:

- Analytical calculations: 98.9%
- Derived from simulation: 98.8%

Comparison: Analytic vs. Simulation

• Possible converter design, switching frequency 50 kHz

- Analytical calculations: 98.7%
- Derived from simulation: 98.6%

Comparison: Analytic vs. Simulation

Analytical

Calculate one operating point: ~1 s

Set-up model: month(s)

Non-linearities: difficult (e.g. C_{oss})

Model adaptability: low to none, difficult

Simulation

Calculate one operating point: 8 s (slower) - to be much improved in the future!

Set-up model: days – 2 weeks (much faster)

Non-linearities: easy

Model adaptability: high and simple

Results: match well

Future Development of GeckoCIRCUITS (Version 2.0)

- Variable / adaptive simulation step-width \checkmark
- Fast <u>direct</u> steady state calculation √
- Reluctance models for transformers / magnetic circuits
- Magnetics losses calculation √
- More detailed switch models (MOSFETS, bipolar transistors, ...)
- Built-in optimization algorithms
- Connection of GeckoCIRCUITS to 3D field solvers:
 - GeckoEMC: calculation of layout parasitics V
 - GeckoHEAT: 3D finite element thermal simulation 🗸

Version 2.0 Release: June 2012

Further increases → calculation speed → Optimization!

Thermal Modeling & Simulation: GeckoHEAT

- Standard approach to thermal simulation: 3D-FEM simulation when necessary: slow and cumbersome
- GeckoHEAT: Finite-difference method (FDM) based approach to thermal modeling and simulation: thermal RC (impedance) circuits
- Easy-to-use, very fast
- Various boundary-conditions
 - Power loss density
 - Convection boundary
 - Fixed temperature
- Automatic extraction of thermal impedance network
- Conduction problems only: convection too complex
- Computation time reduction compared to 3D-FEM: hours → minutes, minutes → seconds

Inductor Modeling: Reluctance model

	Electric Network	Magnetic Network
Conductivity	K	μ
Resistance	$R = l / \kappa A$	$R_{\rm m} = l / \mu A$
Voltage	$V = \int_{P_1}^{P_2} \vec{E} \mathrm{d}\vec{s}$	$V_{\rm m} = \int_{P_{\rm m}}^{P_{\rm m}} \vec{H} \mathrm{d}\vec{s}$
Current / Flux	$I = \iint_A \vec{J} \mathrm{d}\vec{A}$	$\Phi = \iint_A \vec{B} \mathrm{d}\vec{A}$

E-Core Reluctance model

Inductor Loss Modeling

- Winding losses: analytic formulae well known and reasonably accurate
- Problem: Core losses: Improved generalized Steinmetz eqn.:

$$P_{\rm v} = \frac{1}{T} \int_{0}^{T} k_i \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} \left(\Delta B \right)^{\beta - \alpha} \mathrm{d}t$$

- DC bias not considered!
- Relaxation effect not considered
- Steinmetz parameters are valid only in a limited flux density and frequency range

Core Loss Modeling including DC Bias

• Further improved generalized Steinmetz Equation:

$$P_{v} = \frac{1}{T} \int_{0}^{T} k \left[\frac{\mathrm{d}B}{\mathrm{d}t} \right]^{\alpha} (\Delta B)^{\beta} dt + \sum_{l=1}^{n} Q_{rl} P_{rl} \qquad \begin{array}{c} \text{Simulated by} \\ \text{reluctance model} \end{array}$$

- Must measure core losses to parameterize the equation!
- Need database of core material measurements in simulation tool

• Experimentally verified

papers: J. Muehlethaler, J. W. Kolar, et al., ICPE 2011, APEC 2011, IPEC 2010

GeckoMAGNETICS: 3D Tool for Inductor Loss Calculations

Currently in Development Inputs:

- Core Dimensions
- Winding properties (round conductor, Litz Wire, Foil Conductors & arragement)
- Material Database (B-H curve, Steinmetz paramters, loss map)
- Current/Flux waveforms (e.g. from GeckoCIRCUITS, FFT)
- Inductor thermal model

Output:

- Total losses & loss distribution
- Inductances
- Field distribution

Electromagnetic Modeling: GeckoEMC

- 3D electromagnetic modeling and simulation
 - Parasitics in modules, components
 - Layout parasitics
 - EMI filters
- Can be done with 3D FEM/FDM \rightarrow usually very slow
- Solution: Partial Element Equivalent Circuit Method (PEEC)

 \rightarrow Model EM properties as a circuit, utilize fast circuit solver

Electromagnetic Modeling: GeckoEMC

• Module modeling:

Maxwell 3D: 1 h 20 min

GeckoEMC: 30 sec

- EMI Filter modeling: Currently works only with toroidal inductors
 - Coupling effects considering geometric arrangement

Coupling GeckoCIRCUITS and GeckoEMC

Combining Simulation Domains – MOR

Motivation: Finally, we want to include thermal models and electromagnetic models (parasitics) into a circuit simulation

- Typical: Thermal or EM solver contains > 10000 cells
- Circuit simulation: dt = 100 nsec, T = 1 sec
- ightarrow This is impossible to solve together
- Our future solution approach: Model Order Reduction (MORe)

MORe: Construct a simplified system to approximate the original system with reasonable accuracy.

Gecko-Research Software Overview

