

International Forum on Recent Trends in Power Electronics

Latest Findings in Three-Phase

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

May 18, 2018

International Forum on Recent Trends in Power Electronics

Latest Findings in Three-Phase AC/DC Converter Research

J.W. Kolar, M. Antivachis, D. Bortis, D. Menzi, J. Miniböck, F. Krismer

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

May 18, 2018

Outline

- ► Introduction
- High-Power EV Battery Charging
- Advanced Drive Systems
- **Conclusions**

ETH Zurich

21	Nobel Prizes
509	Professors
5800	T&R Staff
2	Campuses
136	Labs
35%	Int. Students
90	Nationalities
36	Languages

150th Anniv. in 2005

Departments

ARCH **Architecture** BAUG **Civil, Environmental and Geomatics Eng.** BIOL **Biology** BSSE **Biosystems Chemistry and Applied Biosciences CHAB Earth Sciences** ERDW Humanities, Social and Political Sciences GESS HEST Health Sciences, Technology **Computer Science** INFK Information Technology and Electrical Eng. ITET **Mathematics** MATH **Materials Science** MATL **Mechanical and Process Engineering** MAVT Management, Technology and Economy MTEC PHYS **Physics** USYS **Environmental Systems Sciences**

Students ETH in total

14′500	B.Sc.+M.ScStudents		
4′000	Doctoral Students		

ITET - Power Electronic Systems Laboratory

ii/33

Power Electronic Systems Laboratory

23 Ph.D. Students 2 Sen. Level Researchers

ETH zürich

iii/33

- **China** EV Charging Equipment Supplier Qualification Standard
- Extremely Wide DC Output Voltage Range

► Buck-Boost Functionality → Boost-Type PFC Rectifier & Back-End Buck Converter

- **China** EV Charging Equipment Supplier Qualification Standard
- Extremely Wide DC Output Voltage Range

► Buck-Boost Functionality → Boost-Type PFC Rectifier & Back-End Buck Converter

- China EV Charging Equipment Supplier Qualification Standard
- Extremely Wide DC Output Voltage Range

Buck-Stage Utilized for DC Link Voltage Shaping / Switching of Single Mains Phase

1-out-of-3 *Boost+Buck* AC/DC Converter

- Single Phase PWM Operation → Low Switching Losses / High Efficiency
- Cont. Input & Output Currents

► High Output Voltage → Operation as *Conv. Boost-Type* PWM Rectifier / Clamped Buck-Stage

- Individual DC Link Voltages of the Phases
- AC Input Phase Voltages Generated with Reference to DC-Minus
- DC Link Voltages Adapted to Required AC Input Phase Voltage

- Continuous Input and Output Currents
- ► Clamping of Boost or Buck Bridge Leg of Phase Module → Low Switching Losses

- Individual DC Link Voltages of the Phases
- AC Input Phase Voltages Generated with Reference to DC-Minus
- DC Link Voltages Adapted to Required AC Input Phase Voltage

- Continuous Input and Output Currents

- *"Buck-Boost" Instead of "Boost-Buck" Phase Modules* AC Input Phase Voltages Generated with Reference to DC-Minus

- No Intermediate DC Link Voltages
 - Converter Integrated Filter Inductors \rightarrow High Power Density
- Clamping of Boost or Buck Bridge Leg \rightarrow Low Switching Losses

Input Current & Output Voltage Control

Cascaded Single Energy Storage Control Loops
 Seamless Transition between Boost- & Buck-Mode
 "Democratic" Control

Isolated Single-Stage AC/DC Converter

Dual 3- Φ Active Bridge Converter

- HF-Components of Boost Ind. Voltages Utilized for Power Transfer
 Dual Active Bridge Concept
- ZVS

Three-Port System - AC Input / Isol. DC Output / Non-Isol. DC Output

Dual 3- Φ Active Bridge Converter

- HF-Components of Boost Ind. Voltages Utilized for Power Transfer
- Dual Active Bridge Concept
- ZVS

Three-Port System - AC Input / Isol. DC Output / Non-Isol. DC Output

Power Electronic Systems Laboratory

Dual 3- Φ **Active Bridge Converter**

■ Multi-Objective Optimization → *Efficiency / Power Density Pareto Front*

EMI filter

(5 W)

- Volume and Loss Distribution
- $P = 8 kW, 400 V_{AC} / 400 V_{DC}$

Efficiency > 98% in Wide Output Power Range @ 4kW/dm³ Power Density (65W/in³)

11/33

gate drivers, control, fan

ETH zürich

Inverter / Drive Applications

- Battery or Fuel-Cell Supply → Wide DC Input Voltage Range Matching of Supply & Rated Motor Voltage

Inverter Input Voltage Adaption by DC/DC Boost Converter

Inverter / Drive Applications

- Front-End DC/DC Boost Converter DC Link Voltage Adaption
 SiC Power Semiconductors → Low Switching (& Conduction) Losses

Motor Winding Insulation Stress / Reflections on Long Motor Cables / Bearing Currents

Output Filter Requirement (1)

Ultra-Fast Switching of WBG Power MOSFETs

LDI

LLo

LSI

L_{D2}

LS2

D

TO-247-4

TO-247-3

Typical dv/dt of 30...50kV/us

01

Motor Winding Insulation Stress / Reflections on Long Motor Cables / Bearing Currents

Vdc

ETHzürich

Output Filter Requirement (2)

- Long Motor Cables $\rightarrow 2x U_{DC}$ Overvoltage / Insul. Stress
- Application Restrictions (NEMA Standard)

	Motor Cable Length ¹					
Power Line Voltage	up to 75 ft	up to 100 ft	up to the max. length in the "Motor Connection Spec."	longer		
208 – 240 V AC	Gen (NE	(3)				
480 V AC	General Purpose Motor (NEMA MG 1, Part 30)		Inverter Duty Motor (NEMA MG 1, Part 31) ²	(3)		
575 – 600 V AC	General Purpose Motor I (NEMA MG 1, Part 30) (N		nverter Duty Motor EMA MG 1, Part 31) ²	(3)		

0 V

 \mathcal{N}

- 1. These maximum motor cable lengths are rules of thumb based on the motor's stator insulation and the VFD's maximum motor cable length capability. RFI/EMC concerns are not taken into account. All lengths are based on the ACH550 VFD. Competitive VFDs may need a significantly shorter motor cable length.
- 2. Follow the maximum cable length recommendations of the motor manufacturer, if they are more restrictive.
- 3. For motor cable lengths longer than the VFD's recommendation, a sine wave filter and/or other considerations may be required. Contact ABB.

Imped. Matching @ Motor Terminals / Double Transition PWM / dv/dt- or Sine Wave Filters

15/33

Cable = 3m

Output Filter Requirement (3)

- CM Inverter Output Voltage \rightarrow Shaft Voltage \rightarrow Electrical Discharge in Bearing ("EDM")
- CM Conducted $EMI \rightarrow Expensive$ Shielded Motor Cables

► Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt- or Sine Wave Filters

Buck-Boost Inverters with Output Filter

- Boost Converter & *Voltage DC Link Inverter* with LC Output Filter
- Buck Converter & Current DC Link Inverter ("Integrated Filter")

► Large Number of Ind. Components OR Large Number of Power Semiconductors

Buck-Boost Inverter with Output Filter

- Battery or Fuel-Cell Supply → Wide DC Input Voltage Range
- Matching of Supply & Rated Motor Voltage

Motor Winding Insulation Stress / Reflections on Long Motor Cables / Bearing Currents

- Three-Phase Continuous Output / Low EMI !
- Buck+Boost Operation / Wide Input &/or Output Range Industrial Drive
 Standard Bridge Legs / Building Blocks 1.2kV SiC MOSFE
 ZVS Operation / Extreme Power Density

- 1.2kV SiC MOSFETs

Project Scope \rightarrow Hardware Demonstrator / Exp. Analysis / Comparative Evaluation

• Operating Behavior

ETH zürich

Y-Inverter

- Modulation Schemes
- Output Voltage DC Offset for Low Modulation Index
- Third Harmonic Injection OR Phase Clamping

Reduced Output Voltage Amplitude / Reduction of Sw. Losses

■ *"Democratic Control"* → Seamless Transition Between Buck & Boost Operation

- Demonstrator Specifications
- Wide Input Voltage Range \rightarrow 400...750V_{DC}
- Max. Input Current $\rightarrow \pm 15A$

Max. Output Power

- \rightarrow 6...11 kW
- Output Frequency Range
 Output Voltage Ripple
- → 0...500Hz
- → 3.2V Peak-to-Peak (incl. Add. Output Filter)

- System Design
- Identification of Worst Case Component Stresses
- Analysis in Input Voltage / Output Voltage / Output Power 3D-Design Space

Example of Inductor Current Stress Analysis \rightarrow $I_{L,rms}$ and $I_{L,pk}$

• Demonstrator Power Circuit

- Inductors → 2 x EELP 43 Ferrite Cores / N97 per Phase
 Add. Output Filter → 3.2V Peak-to-Peak Output Voltage Ripple
 Power Semiconductors → 3 x Cree 1200V/75mΩ SiC MOSFETs per Switch Mounted on IMS

• Demonstrator Power Circuit

- Inductors → 2 x EELP 43 Ferrite Cores / N97 per Phase
 Add. Output Filter → 3.2V Peak-to-Peak Output Voltage Ripple
 Power Semiconductors → 3 x Cree 1200V/75mΩ SiC MOSFETs per Switch Mounted on IMS

• Demonstrator Performance - Volume Distribution

Power Density \rightarrow 15kW/dm³ (0.73dm³)

ETHzürich

• Demonstrator Performance - Loss Distribution (Design Margin Considered)

98% Efficiency Target @ Rated Power & Input/Output Voltage

• Demonstrator Performance - Efficiency over Output Power @ Given Input Voltage

Higher Efficiency for *Phase Clamping Modulation*

• Demonstrator - Virtual Prototype (1)

• Demonstrator - Virtual Prototype (2)

Dimensions \rightarrow 160 x 110 x 42 mm³

• Alternative Power Circuit Topology

■ Lower Number of Switches / Higher Component Stresses → Low Power Applications

Conclusions

Future Need for "SWISS Knife"-Type Power Converters

- * Wide Input / Load Voltage Range
 * Standard Building Blocks / Modular
 * Bidirectional Power Transfer
 * Electromagnetically "Quiet"
 * 10kW/dm³ Power Density incl. EMI Filter @ Air Cooling
- * 98% Efficiency

► Y-Inverter / Rectifier

- * Next Generation Integrated Motor Drives
- * Next Generation PMW Rectifiers

33/33

ETH zürich

Thank You !

