# **ETH** zürich





# Impact of Magnetics on Power Electronics Converter Performance

State-of-the-Art and Future Prospects

J. W. Kolar et al.



Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch



# **ETH** zürich





# Impact of Magnetics on Power Electronics Converter Performance

#### State-of-the-Art and Future Prospects

J. W. Kolar, F. Krismer, M. Leibl, D. Neumayr, L. Schrittwieser, D. Bortis

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch



# **Outline**

- Performance Trends
- Design Space / Performance Space
- Performance Characteristics of Key Components
- Feasible Performance Space / Pareto Front
- Losses Due to Local Stresses in Ferrite Surfaces
- The Ideal Switch is NOT Enough!
- Challenges in MV/MF Power Conversion
- **Future Prospects**

E. Hoene / FH IZM St. Hoffmann / FH IZM M. Kasper E. Hatipoglu P. Papamanolis Th. Guillod J. Miniböck U. Badstübner





# Introduction

Converter Performance Indicators Design Space / Performance Space





#### Power Electronics Converter Performance Indicators





**ETH** zürich

# Performance Limits (1)

- Example of Highly-Compact 1-Φ PFC Rectifier
- Two Interleaved 1.6kW Systems





$$\star$$
  $\eta = 95.8\% @ \rho = 5.5 \text{ kW/dm}^3$ 





→ High Power Density @ Low Efficiency
 → Trade-Off Between Power Density and Efficiency





# Performance Limits (2)

- Example of Highly-Efficient 1-⊕ PFC Rectifier
- Two Interleaved 1.6kW Systems

 $P_0 = 3.2 \text{kW}$  $U_N = 230 \text{V} \pm 10\%$  $U_0 = 365 \text{V}$ 

 $f_P = 33$ kHz  $\pm$  3kHz

$$\star$$
  $\eta = 99.2\%$  @  $\rho = 1.1$  kW/dm<sup>3</sup>



→ High Efficiency @ Low Power Density → Trade-Off Between Power Density and Efficiency







**ETH** zürich

#### Abstraction of Power Converter Design



→ Mapping of "Design Space" into "Performance Space"

Pulling -



#### Derivation of η-ρ-Performance Limit of Converter Systems

Component  $\eta$  - $\rho$  -Characteristics Converter  $\eta$  - $\rho$  -Pareto Front





**ETH** zürich

# Derivation of the η-ρ-Performance Limit

**Example of DC/AC Converter System** 





— 6/6**1** 

# η-ρ-Characteristic of Energy Storage





# Remark – Active Power Pulsation Buffer

- Large Voltage Fluctuation *Foil or Ceramic Capacitor*
- Buck-Type (Lower Voltage Levels) or Boost-Type DC/DC Interface Converter



→ Significantly Lower Overall Volume Compared to Electrolytic Capacitor BUT Lower Efficiency





**Power Electronic Systems** Laboratory

# η-ρ-Characteristic of Power Semiconductors / Heatsink

- Semiconductor Losses are Translating into Heat Sink Volume
- Heatsink Characterized by <u>Cooling System Performance Index (CSPI)</u>
- Volume of Semiconductors Neglected









ETH zürich

## **Remark – Selection of Semiconductor Chip Area**

- **Optimize Chip for Minimum Sw. and Conduction Losses**
- Loss Minimum Dependent on Sw. Frequency
- Influence of Power Semiconductor FOM





 $\Delta \eta_{\text{aux}} = \frac{P_{\text{aux}}}{P_0}$  $\rho_{\text{aux}} = \frac{P_0}{V_{\text{aux}}}$ 

# $\blacktriangleright \eta$ - $\rho$ -Characteristic of Auxiliary Supply

- Power Consumption of Control, Fans etc. Independent of Output Power Power Density Relates Volume of Aux. Supply to Total (!) Output Power











**Power Electronic Systems** Laboratory

# η-ρ-Characteristic of Storage+Heatsink+Auxiliary

- Overall Power Density Lower than Lowest Individual Power Density
- Total Efficiency Lower than Lowest Individual Efficiency

$$V = V_{C} + V_{H} + V_{aux} | \cdot \frac{1}{P_{0}} \qquad \rho_{i} = \frac{P_{0}}{V_{i}} \qquad P_{I} = P_{0} + \sum_{i} P_{i} = \frac{P_{0}}{\eta} \quad \Rightarrow \boxed{\eta} = \frac{1}{(1 + \frac{\sum_{i} P_{i}}{P_{0}})}$$
$$\rho_{i}^{-1} = \rho_{C}^{-1} + \rho_{H}^{-1} + \rho_{aux}^{-1}$$

- Example of Heat Sink + Storage (No Losses)



**ETH** zürich

# • $\eta$ - $\rho$ -Characteristic of Inductor (1)

Inductor Flux Swing Defined by DC Voltage & Sw. Frequ. (& Mod. Index)





• "-1"-Order Approx. of Volume-Dependency of Losses

$$\Delta \hat{B} = \frac{U_{DC} \frac{1}{4} T_{P}}{NA_{E}} \propto \frac{U_{DC}}{f_{P}A_{E}} \propto \frac{1}{A_{E}} \propto \frac{1}{l^{2}} \rightarrow P_{E} \propto f_{P}^{\alpha} \Delta \hat{B}^{\beta} V_{E} \propto \approx (\frac{1}{l^{4}})l^{3} \propto \frac{1}{l}$$

$$P_{W} = I_{rms}^{2} R_{W} \propto \frac{l}{\kappa A_{W}} \propto \frac{l}{l^{2}} \propto \frac{1}{l}$$

$$P_{W} = K_{\Sigma} V_{L}^{\frac{4(2-\beta)}{3(2+\beta)} \frac{1}{3}} f_{P}^{\frac{2(\alpha-\beta)}{2+\beta}} I_{rms}^{\frac{2\beta}{2+\beta}} U_{DC}^{\frac{2\beta}{2+\beta}} |_{\beta=2}^{\alpha=1} \rightarrow \infty \frac{U_{DC}I_{rms}}{\sqrt{f_{P}}V_{L}^{\frac{1}{3}}}$$

 $\rightarrow$  Losses are Decreasing with Increasing Linear Dimensions & Sw. Frequency



αl

ETHzürich



- Loss-Opt. of Single-Airgap N87 Core Inductor Consideration of HF Winding and Core Losses Thermal Limit Acc. To Natural Convection

- **Assumption:** Given Magnetic Core 10-1  $10^{0}$ 10-1 10-2 10<sup>1</sup> 100kHz  $10^{2}$ Natural Convection 1111 **Total Loss** Thermal Limit  $10^{1}$ Loss (W) LF Winding Loss Core Loss  $10^{0}$ HF Winding Loss  $10^{2}$ 10- $10^{0}$  $10^{-1}$  $10^{-2}$  $10^{1}$ Total Loss (W) 1000kHz  $10^{2}$ **T T T T T T T T** 101  $10^{4}$ Total Loss Switching Frequency (HP) LF Winding Loss  $10^{1}$ Loss (W) Core Loss  $10^{0}$ HF Winding Loss  $10^{0}$  $10^{1}$ 1111  $10^{0}$  $10^{-10}$  $10^{-1}$ 10-2  $10^{0}$ 10<sup>1</sup> 10-1  $10^{-2}$ Current Ripple (p.u.) Current Ripple (p.u.)

 $\rightarrow$  Higher Sw. Frequ. – Lower Min. Ind. Losses – Overall Loss Red. Limited by Semicond. Sw. Losses





14/61

10kHz

Core Loss

HF Winding Loss

Total Loss

**TTTT** 

LF Winding Loss

 $10^{2}$ 

 $10^{1}$ 

 $10^{0}$ 

Loss (W)

**Power Electronic Systems** — Laboratory

# $\blacktriangleright \eta$ - $\rho$ -Characteristic of Inductor (3)

- Overall Power Density Lower than Lowest Individual Power Density
   Total Efficiency Lower than Individual Efficiency

$$P_{L} \propto \frac{U_{DC}I_{max}}{\sqrt{f_{P}}V_{L}^{\frac{1}{3}}} \propto \frac{P_{O}}{\sqrt{f_{P}}V_{L}^{\frac{1}{3}}} (=k_{L,max}V_{L}^{\frac{2}{3}})$$

$$P_{L} = (1 - \eta_{L})P_{I} = (1 - \eta_{L})\frac{P_{O}}{\eta_{L}}$$

$$P_{L} = \frac{P_{O}}{V_{L}} \propto P_{O} f_{P}^{\frac{3}{2}} \frac{(1 - \eta_{L})^{3}}{\eta_{L}^{3}}$$

$$P_{L,max} \propto \sqrt{f_{P}}$$



**ETH** zürich

- 15/61 -

## Remark – Natural Conv. Thermal Limit (1)

- Example of Highly-Compact 3-**PFC** Rectifier Nat. Conv. Cooling of Inductors and EMI Filter
- Semiconductors Mounted on Cold Plate

 $P_0$  = 10 kW  $U_N$  = 230V<sub>AC</sub>±10%  $f_N$  = 50Hz or 360...800Hz  $U_0$  = 800V<sub>DC</sub>

*f<sub>p</sub>*= 250kHz

**ETH** zürich





→ Systems with  $f_p$ = 72/250/500/1000kHz → Factor 10 in  $f_p$  - Factor 2 in Power Density



## Remark – Natural Conv. Thermal Limit (2)

 $\rho$  (kW/dm<sup>3</sup>)

10

- Example of Highly-Compact 3-**PFC** Rectifier Nat. Conv. Cooling of Inductors and EMI Filter
- Semiconductors Mounted on Cold Plate



*f<sub>P</sub>*= 250kHz

**ETH** zürich



 $f_{\mathbf{P}}$  (kHz)

 $\star \rho = 10 \text{ kW/dm}^3 @ \eta = 96.2\%$ 

→ Systems with  $f_P$ = 72/250/500/1000kHz → Factor 10 in  $f_P$  - Factor 2 in Power Density

### Remark – Natural Conv. Thermal Limit (3)

- **Consideration of Different Shape Factors Constant Power to be Processed**



- $\rightarrow$  Planar Structure Facilitate High Power Density
- $\rightarrow$  Cube Shape Shows Low Surface Area @ Given Volume
- $\rightarrow$  Nat. Conv. Requires Min. Thickness of Boundary Layer (>5mm) which is often Not Considered





# • $\eta$ - $\rho$ -Characteristic of Inductor (4)

- Natural Convection Heat Transfer Seriously Limits Allowed Inductor Losses
- Higher Power Density Through Explicit Inductor Heatsink



→ Heat Transfer Coefficients  $k_L$  and  $\alpha_L$  Dependent on Max. Surface Temp. / Heatsink Temp. → Water Cooling Facilitates Extreme (Local) Power Densities





# Remark – Example for Explicit Heatsink for Magn. Component

- Phase-Shift Full-Bridge Isolated DC/DC Converter with Current-Doubler Rectifier
- Heat Transfer Component (HTC) & Heatsink for Transformer Cooling Magn. Integration of Current-Doubler Inductors





# **Remark – Example for Explicit Heatsink for Magn. Component**

- Phase-Shift Full-Bridge Isolated DC/DC Converter with Current-Doubler Rectifier Heat Transfer Component (HTC) & Heatsink for Transformer Cooling
- Magn. Integration of Current-Doubler Inductors

$$P_o = 5kW$$
  
 $U_{in} = 400V$   
 $U_o = 48...56V$  (300mV<sub>pp</sub>)  
 $T_a = 45^{\circ}C$ 

 $f_{P} = 120 \text{kHz}$ 









## Remark – Dependency of Efficiency on Load Condition

- Assumption of Purely Ohmic Losses
- Quadratic Dependency of Losses on Output Power



→ Quadratic Reduction of Losses with Output Power
 → High Part Load Efficiency Despite Low Rated Load Efficiency (Thermal. Limit @ Rated Load)





-

# Overall Converter n-p-Characteristics

- **Combination of Storage/Heatsink/Auxiliary & Inductor Characteristics Sw. Frequ. Indicates Related Loss and Power Density Values** !

Low Semiconductor Sw. Losses

η η inductor inductor *f*<sub>P1</sub> *1*<sub>P2</sub> ĴP1 1P2  $f_{\rm P} = 0$  $\mathbf{O} f_{\rm P} = 0$ •  $\bullet$ ••••• ..... ·O··· 0 0 Ś  $f_{\rm P1}$ ⊙ *f*P1 `*Ĵ*₽1 TP1 JP2  $f_{\rm P2} > f_{\rm P1}$  $\Box f_{P2}$  $f_{\rm P2} > f_{\rm P1}$ storage, heatsink, storage, aux. supply heatsink, aux. supply  $\rho$  $\blacktriangleright \rho$ ≻

High Semiconductor Sw. Losses

→ Low Sw. Losses / High Sw. Frequ. / Small Heatsink / Small Ind. / High Total Power Density → High Sw. Losses / Low Sw. Frequ. / Large Heatsink / Large Ind. / Low Total Power Density





# **•** Overall Converter $\eta$ - $\rho$ -Characteristics – Summary

- Inductor Takes Significant Influence on Efficiency/Power Density Characteristic
- Converters with Inductor  $\rightarrow$  Very Low Losses Only for Very Low Power Density Conv. with No Inductor  $\rightarrow$  Very High Power Density @ Low Losses
- Inductor Defines Power Density Limit of Ultra-Efficient Converter Systems !



→ Eff./Power Density Characteristic Strongly Dependent on Converter Type !
 → Variable Speed Drive Inverters - No Inductor (Built into AC Machine) - Very High Power Density







**\_ Reduction of Inductor Requirement** 

 $\begin{array}{l} \rightarrow \ {\rm Parallel} \ {\rm Interleaving} \\ \rightarrow \ {\rm Series} \ {\rm Interleaving} \end{array}$ 





# Inductor Volt-Seconds / Size

- Inductor Volt-Seconds are Determining the Local Flux Density Ampl.
- Output Inductor has to be Considered Part of the EMI Filter

$$\Delta \hat{B} \propto \frac{T_P U_{DC}}{A_E} \propto \frac{U_{DC}}{f_P A_E}$$

25/61

- Multi-Level Converters Allow to Decrease Volt-Seconds by Factor of N<sup>2</sup>
- Calculation of Equivalent Noise Voltage @ Sw. Frequency (2<sup>nd</sup> Bridge Leg w. Fund. Frequ.)



 $\rightarrow$  EMI Filter Design Can be Based on Equiv. Noise Voltage





# Reduction of Inductor Volt-Seconds / Size





 $\rightarrow$  Identical Spectral Properties for Both Concepts → Series Interleaving Avoids Coupling Inductor of Parallel Interleaving !





 $A_{E}$ 

**ETH** zürich





→ Basic Patent on FCC Converter – Th. Meynard (1991) ! FIG. 4

- **5 Output Voltage Levels**
- 320 kHz Single-Cell Sw. Frequency
- 12µF Flying Čapacitors
   Improved Phase-Shift PWM

 $S_{IN1}$  for Precharge  $S_{IN2}$  for Operation **IBB:** Internal Balance Booster,  $10k\Omega$ Low loss IBBs  $S_1$  $S_2$ Switching  $V_{\rm DC}$  $C_{FC1}$  $R_{\rm par} L_{\rm F}$ m. @100HzSUF1 SUF2  $C_{\rm F}$ SUF3  $S_{\rm UF}$ 





 $\rightarrow$  Very Small Output Inductor  $\rightarrow$  Voltage Balancing Challenging in certain Operating Conditions





## Required EMI Filter Attenuation (1)



→ Higher Switching Frequency Increases Required Attenuation





**ETH** zürich

# Required EMI Filter Attenuation (2)



 $\rightarrow$  Higher Switching Frequ. Increases Required Att.  $\rightarrow$  Only Option  $f_{\rho}$  >500kHz



# Transformers

Optimal Operating Frequency Example of MF/MV Transformer




### Transformer Operation Frequency Limit

- **Dependency of Volume and Weight on Frequency**
- Higher Frequency Results in Smaller Transformer Size only Up to Certain Limit (Prox. Eff.) Defined Frequencies for Min. Vol. or Min. Weight Dep. On Strand Diam. & Wdg Width









### Future Direct MV Supply of 400V DC Distribution of Datacenters

- Reduces Losses & Footprint / Improves Reliability & Power Quality Unidirectional Multi-Cell Solid-State Transformer (SST)
- AC/DC and DC/DC Stage per Cell, Cells in Input Series / Output Parallel Arrangement
- **Conventional US 480V**<sub>AC</sub> **Distribution**





Facility-Level 400 V<sub>pc</sub> Distribution



 $\rightarrow$  Unidirectional SST / Direct 6.6kV AC  $\rightarrow$  400V DC Conversion





### **Example of a 166kW/20kHz SST DC/DC Converter Cell**

- Half-Cycle DCM Series Resonant DC-DC Converter
- Medium-Voltage Side 2kV
- ∎ Low-Voltage Side 400V







### MF Transformer Design

- DoF Electric (# of Turns & Op. Frequ.) / Geometric / Material (Core & Wdg) Parameters Cooling / Therm. Mod. of Key Importance / Anisotr. Behavior of Litz Wire / Mag. Tape 20kHz Operation Defined by IGBT Sw. Losses / Fixed Geometry



→ Region I: Sat. Limited / Min. Loss @  $P_c/P_W = 2/\beta (R_{AC}/R_{DC} = \beta/\alpha)$  / Region III: Prox. Loss Domin. → Heat Conducting Plates between Cores and on Wdg. Surface / Top/Bottom H<sub>2</sub>O-Cooled Cold Plates





### **MF Transformer Prototype**

- **Power Rating** 166 kW 99.5%
- Efficiency
- **Power Density** 44 kW/dm<sup>3</sup>
- Nanocrystalline Cores with 0.1mm Airgaps between Parallel Cores for -**Equal Flux Partitioning**
- Litz Wire (10 Bundles, 950 x 71µm Each) with CM Chokes for -**Equal Current** Partitioning



**ETH** zürich







# Calculation of Converter $\eta$ - $\rho$ -Performance Limits

**Google** Little Box Challenge Ultra-Efficient 3- $\Phi$  PFC Rectifier









- Design / Build the 2kW 1- $\Phi$  Solar Inverter with the Highest Power Density in the World Power Density > 3kW/dm<sup>3</sup> (50W/in<sup>3</sup>) Efficiency > 95%

- Case Temp.  $< 60^{\circ}C$
- EMI FCC Part 15 B



Push the Forefront of New Technologies in R&D of High Power Density Inverters  $\rightarrow$ 





## Selected Converter Topology

- Interleaving of 2 Bridge Legs per Phase Active DC-Side Buck-Type Power Pulsation Buffer
- 2-Stage EMI AC Output Filter

(3)



- → ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)
   → Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure

(4)

<u> Sasa Sasa Sasa</u>





Heat Sink

╧

# **ZVS of Output Stage / TCM Operation**

• TCM Operation for Resonant Voltage Transition @ Turn-On/Turn-Off



- Requires Only Measurement of Current Zero Crossings, i = 0 Variable Switching Frequency Lowers EMI





## **Evaluation of Power Semiconductors**

Comparison of Soft-Switching Performance of ~60m $\Omega$ , 600V/650V/900V GaN, SiC, Si MOSFETs Measurement of Energy Loss per Switch and Switching Period



- → GaN MOSFETs Feature Best Soft-Switching Performance
- → Similar Soft-Switching Performance Achieved with Si and SiC
   → Almost No Voltage-Dependency of Soft-Switching Losses for Si-MOSFET



**Power Electronic Systems** Laboratory

# **High Frequency Inductors (1)**

- Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect
- Very High Filling Factor / Low High Frequency Losses Magnetically Shielded Construction Minimizing EMI
- Intellectual Property of F. Zajc / Fraza
- L= 10.5µH
- 2 x 8 Turns

**ETH** zürich

- 24 x 80µm Airgaps
  Core Material DMR 51 / Hengdian
  0.61mm Thick Stacked Plates

- 20 μm Copper Foil / 4 in Parallel
  7 μm Kapton Layer Isolation
  20mΩ Winding Resistance / Q≈600
  Terminals in No-Leakage Flux Area



**Dimensions - 14.5 x 14.5 x 22mm<sup>3</sup>**  $\rightarrow$ 







## **High Frequency Inductors (2)**

- High Resonance Frequency → Inductive Behavior up to High Frequencies
   Extremely Low AC-Resistance → Low Conduction Losses up to High Frequencies
- High Quality Factor



 $\rightarrow$  Shielding Eliminates HF Current through the Ferrite  $\rightarrow$  Avoids High Core Losses → Shielding Increases the Parasitic Capacitance





#### **High Frequency Inductors (3)**



**ETH** zürich

- \* **Knowles (1975!)**
- **Cutting of Ferrite Introduces Mech. Stress**
- Significant Increase of the Loss Factor Reduction by Polishing / Etching (5 µm)







## Multi-Airgap Inductor Core Loss Measurements (1)

- Investigated Materials DMR51, N87, N59
- 30 µm PET Foil with Double Sided Adhesive Between the Plates
   Varying Number N of Air Gaps Assembled from Thin Ferrite Plates
- Number of Air Gaps:



Sinusoidal Excitation with Frequencies in the Range of 250 kHz ...1MHz  $\rightarrow$ 





# Multi-Airgap Inductor Core Loss Measurements (2)

- Magnetic Circuit Designed to Concentrate Flux-Density in Sample
- Homogeneous Flux-Density in Sample

- Stray Field in Vicinity of Excitation Winding is Negligible
   Primary Winding: 12 Turns with 270 x 71µm Litz Wire
   Aux. and Sense Winding: 12 Turns with 75 x 50 µm Litz Wire





Stationary Flux Density Distribution with **B** = 150 mT in the Sample Area  $\rightarrow$ 





# Multi-Airgap Inductor Core Loss Measurements (3)

- Losses in Sample Increasing Temperature
   Excitation with 100 mT @ 750 kHz

**ETH** zürich

Start @ T=35°C
Excitation Time = 90 s

Solid,  $\Delta T = 27.7^{\circ}C$ 









## Multi-Airgap Inductor Core Loss Measurements (4)

Total Core Loss in Sample with Varying Air Gaps and Test Fixture
 Excitation @ 500 kHz



→ Losses Increase Linearly with the Number N of Introduced Air Gaps → Conclusion: Surface Layers Deteriorated by Machining of Ferrite





# Analysis of Ferrite Surface Condition

- Untreated Samples
- Etched Samples
- Cut with Diamond Saw from Sintered Ferrite Rod
- 100 µm Etching of Cut Plates with Hydrochloric (HCl) Acid
- Electron Microscopy
- Focused Ion Beam
- 45° Angle and 200 µm Resolution
- FIB Preparation for 5 µm Resolution Electron Microscopy





# **Comparison -** *Untreated* Samples

#### • DMR 51

• N 59

#### • N 87





# **Comparison -** *Etched* Samples

#### • DMR 51

• N 59

#### • N 87





DMR 51 Untreated – FIB Preparation (1)







DMR 51 ETCHED – FIB Preparation (2)





## Multi-Airgap Inductor Core Loss Approximation (1)





# Multi-Airgap Inductor Core Loss Approximation (2)

- Total Core Loss in Sample with Varying Air Gaps and Test Fixture
- Excitation @ 500 kHz



 $\Rightarrow \text{ Ext. of Steinmetz Eq.} \quad P_V = k_0 f^{\alpha} \hat{B}^{\beta} (V_C (\frac{A_S}{A_C})^{\beta} + V_S) + k_S f^{\alpha_S} \hat{B}^{\beta_S} \cdot N \cdot A_S \quad \text{Sufficiently Accurate}$ 



## Little-Box 1.0 Prototype

- Performance
- 8.2 kW/dm<sup>3</sup>

**ETH** zürich

- 96,3%<sup>'</sup> Efficiency @ 2kW
   T<sub>c</sub>=58°C @ 2kW
- **Design Details**

- 600V IFX Normally-Off GaN GIT
  Antiparallel SiC Schottky Diodes
  Multi-Airgap Ind. w. Multi-Layer Foil Wdg
  Triangular Curr. Mode ZVS Operation
  CeraLink Power Pulsation Buffer





Analysis of Potential Performance Improvement for "Ideal Switches"  $\rightarrow$ 



## Little-Box 1.0 Prototype

- Performance
- 8.2 kW/dm<sup>3</sup>

**ETH** zürich

- 96,3% Efficiency @ 2kW
   T<sub>c</sub>=58°C @ 2kW
- **Design Details**

- 600V IFX Normally-Off GaN GIT
  Antiparallel SiC Schottky Diodes
  Multi-Airgap Ind. w. Multi-Layer Foil Wdg
  Triangular Curr. Mode ZVS Operation
  CeraLink Power Pulsation Buffer





→ Analysis of Potential Performance Improvement for "Ideal Switches"



## Little Box 1.0 @ Ideal Switches (TCM)

- Multi-Objective Optimization of Little-Box 1.0 (X6S Power Pulsation Buffer)
- Step-by-Step Idealization of the Power Transistors
- Ideal Switches:  $k_c = 0$  (Zero Cond. Losses);  $k_s = 0$  (Zero Sw. Losses)



→ Analysis of Improvement of Efficiency @ Given Power Density & Maximum Power Density → The Ideal Switch is NOT Enough (!)









→ L &  $f_s$  are Independent Degrees of Freedom → Large Design Space Diversity (Mutual Compensation of HF and LF Loss Contributions)







### High-Efficiency 3 Buck-Type PFC Rectifier \_\_\_\_\_







### ► 3-Φ Integrated Active Filter (IAF) Rectifier

- Injection of 3<sup>rd</sup> Harmonic Ensures Sinusoidal Input
- Six-Pulse Output of Uncontrolled Rectifier Stage
- Buck-Type Output Stage Generates DC Output from Six-Pulse Rectifier Output
- Three Devices in the Main Conduction Path



### ▶ 3- $\Phi$ IAF Rectifier Multi-Objective Optimization

- Multi-Objective Optimization Max. Efficiency / Max. Power Density / Min. Life Cycle Costs
- Life Cycle Costs: (i) Initial Costs & (ii) Electricity Costs of Converter Losses



 $\rightarrow$  10 Years of 24/7 Operation Demands  $\eta \approx$  99% for Min. LCC













Source: whiskeybehavior.info





### **Future Prospects of Power Electronics**



Microelectronics Technology, Power Supply on Chip

### $\rightarrow$ Future Extension of Power Electronics Application Area



### Future Prospects of Magnetics

### Side Conditions

- Magnetics are Basic Functional Elements (Filtering of Sw. Frequ. Power, Transformers)
- Non-Ideal Material Properties (Wdg. & Core) Result in Finite Magnetics Volume (Scaling Laws)
- Manufacturing Limits Performance (Strand & Tape Thickness etc.) @ Limited Costs

### Option #1: Improve Modeling / Optimize Design

- Core Loss Modeling / Measurement Techniques (Cores and Complete Ind. / Transformer)
- Multi-Obj. Optimiz. Considering Full System
- Design for Manufacturing

### Option #2: Improve Material Properties / Manufacturing

- Integrated Cooling
- PCB-Based Magnetics with High Filling Factor (e.g. VICOR)
- Advanced Locally Adapted Litz Wire / Low- $\mu$  Material (Distributed Gap) / Low HF-Loss Material

### Option #3: Minimize Requirement

- Multi-Level Converters
- Magnetic Integration
- Hybrid (Cap./Ind.) Converters

### → Magnetics/Passives-Centric Power Electronics Research Approach !












## Thank You !





