

Conceptualization and Multi-Objective Optimization of the Electric System of an Airborne Wind Turbine

J. W. Kolar et al.

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Pareto-Optimal Design of Airborne Wind Turbine Power Electronics

J. W. Kolar, T. Friedli, F. Krismer, A. Looser, M. Schweizer, P. Steimer, J. Bevirt

Power and productivity for a better worldTM

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

Futuristic Wind Turbine Concepts
 Airborne Wind Turbine Electrical System
 Multi-Objective Optimization
 Controls Aspects
 Conclusions

3/63

Conventional 100kW Wind Turbine

- Characteristics
- Tower 35m/18 tons
- Rotor 21m / 2.3to
- Nacelle

35m/18 tons 21m / 2.3tons 4.4 tons

Large Fraction of Mechanically Supporting Parts / High Costs

Revolutionize Wind Power Generation Using Kites / Tethered Airfoils

[2] M. Loyd, 1980

■ Wing Tips / Highest Speed Regions are the Main Power Generating Parts of a Wind Turbine

5/63

Controlled Power Kites for Capturing Wind Power

- Replace Blades by Power Kites
- Minimum Base Foundation etc. Required Operative Height Adjustable to Wind Conditions

[2] M. Loyd, 1980

Wing Tips / Highest Speed Regions are the Main Power Generating Parts of a Wind Turbine

Controlled Power Kites for Capturing Wind Power

- Wind at High Altitudes is Faster and More Consistent
- Operate Kites at High Altitudes or Even in the Jet Stream

Controlled Power Kites for Capturing Wind Power

- ► Wind at High Altitudes is Faster and More Consistent
- Operate Kites at High Altitudes or Even in the Jet Stream

Pumping Power Kites

► Kite's Aerodynamic Surface Converts Wind Energy into Kite Motion

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Power Electronic Systems** Laboratory

Pumping Power Kites

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Pumping Power Kites for Capturing High Altitude Wind Power

- Lower Electricity Production Costs than Current Wind Farms
 Generate up to 250 MW/km², vs. the Current 3 MW/km²
 Research at the POLITECNICO DI TORINO

traction phase

 $\Theta = 0$

 $\Theta = \Theta_0$

Pumping Power Kites for Capturing High Altitude Wind Power

- Lower Electricity Production Costs than Current Wind Farms
 Generate up to 250 MW/km², vs. the Current 3 MW/km²
- Research at the POLITECNICO DI TORINO

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Alternative Concept – Airborne Wind Turbine

- Power Kite Equipped with Turbine / Generator / Power Electronics
 Power Transmitted to Ground Electrically

[2] M. Loyd, 1980

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Alternative Concept – Airborne Wind Turbine

- Power Kite Equipped with Turbine / Generator / Power Electronics
 Power Transmitted to Ground Electrically

[2] M. Loyd, 1980

Basic Physics of Wind Turbines

- ► Maximum Achievable acc. to Lanchester / Betz
- ► High Crosswind Kite Speed → Very Small Turbine Area

 $c_{\rm P,i} = \frac{16}{27} \approx 0.59$

Comparison of Conventional / Airborne Wind Turbine

SkyWindPower AWT Concept

- **•** Tethered Rotorcraft Quadrupole Rotor Arrangement
- Inclined Rotors Generate Lift & Force Rotation / Electricity Generation

■ Named as One of the 50 Top Inventions in 2008 by TIME Magazine

- Reinforced Tether Transfers MV-Electricity to Ground
 Composite Tether also Provides Mechanical Connection to Ground

AWT Basic Electrical System Structure

- **Rated Power**
- Operating Height Ambient Temp. Power Flow

El. System Target Weight Efficiency (incl. Tether) Turbine /Motor

800...1000m 40°C **Motor & Generator**

100kW

100kg

2000/3000rpm

90%

Airborne Wind Turbine

Turbines, Generators, and **Power Electronics**

19/63

Design of Electrical Power System

Clarify Practical Feasibility of AWT Concept Clarify Weight/Efficiency Trade-off / Multi-Objective Optimization / Pareto-Front

Tether Design

_____ DC Voltage Level η-γ-Pareto Front -

Tether DC Transmission Voltage Level

- P_{th,1} = 100kW / l_{th} = 1000m
 Strain Relief Core Kevlar (F_{th} = 70kN, d=5mm)
 Cu or Al Helical Conductors 1/2 U_{th} Isolated
 Outer Protection Jacket (3mm)

 $\eta_{\rm Th} = 98.5\%$

Tether η - γ -Pareto Front

► Tether Voltage V_{th,1} = 8kV

23/63

System Overview

Airborne Wind Turbine

Turbines, Generators, and Power Electronics

Possible AWT Electrical System Structures

Low-Voltage or Medium-Voltage Generators / Power Electronics
 Decision Based on Weight/Efficiency/Complexity

Generator / Motor Design

Dimensions — Number of Pole Pairs — η-γ-Pareto Front

Generator / Motor η - γ -Pareto Front

Medium Voltage vs. Low Voltage Machine V_{th,1} = 8kV

- PMSM Radial Flux Internal Rotor Slotted Stator / Concentrated Windings Air Cooling
 Analytical EM and Thermal Models for Weight / Efficiency Optimization
- P = 16kW / 2000rpm

• LVG: Diameter 17cm (excl. Cooling Fins) / Width 6.0cm / p = 20 / η = 95.4% / Weight 5.1kg

27/63

CAD Drawing of LV and MV Machine

Fixed Parameters and Degrees of Freedom

Optimization parameters	Symbol	Range
Air-gap radius	$R_{ m ag}$	$50 \dots 250 \mathrm{mm}$
Active length	L	$10\dots 60\mathrm{mm}$
Slot depth	$h_{ m sl}$	$5\dots 20\mathrm{mm}$
Permanent magnet thickness	$d_{ m pm}$	$2 \dots 8 \mathrm{mm}$
Pole coverage factor	$\alpha_{\rm p}$	$0.8 \dots 1$
Number of pole pairs	p	$5 \dots 30$
* *		
Fixed parameters	Symbol	Value
Fixed parameters Air gap	Symbol δ_{ag}	Value 1.5 mm
Fixed parameters Air gap Copper filling factor	Symbol $\delta_{ m ag} \ k_{ m Cu}$	Value 1.5 mm 0.45
Fixed parameters Air gap Copper filling factor Permanent magnet remanence	$Symbol \\ \delta_{\rm ag} \\ k_{\rm Cu} \\ B_{\rm rem}$	Value 1.5 mm 0.45 1.3 T
Fixed parameters Air gap Copper filling factor Permanent magnet remanence Iron saturation flux density	$\frac{Symbol}{\delta_{\mathrm{ag}}} \\ k_{\mathrm{Cu}} \\ B_{\mathrm{rem}} \\ B_{\mathrm{sat}}$	Value 1.5 mm 0.45 1.3 T 2.2 T
Fixed parameters Air gap Copper filling factor Permanent magnet remanence Iron saturation flux density Insulation thickness	$\frac{\delta_{\rm ag}}{b_{\rm Cu}}$ $\frac{b_{\rm Cu}}{B_{\rm rem}}$ $\frac{b_{\rm sat}}{b_{\rm ms}}$	Value 1.5 mm 0.45 1.3 T 2.2 T 2 mm

Generator / Motor η - γ -Pareto Front

Medium Voltage Machine Not Considered Further

Comparison to Commercial Motors

Motors Employed for Electric Propulsion of Glider Airplane

Power	$P = 10 \mathrm{kW}$
Speed	<i>n</i> = 2200rpm
Cooling	$v_{L} = 25 \text{m/s}$

Diameter 22cm
 Width 8.6cm
 Weight 12kg
 Pole Pairs 10
 Efficiency 91%

30/63

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

System Overview

Rectifier / Inverter Design

Chip Area Heatsink Volume η-γ-Pareto Front

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Rectifier / Inverter Design

2-Level or 3-Level Bidirectional Voltage Source Rectifier

 $C_{\mathrm{DC,p}}$

т

-0

 $C_{\rm DC,n}$

п

-0

1200V T&FS Si IGBT4s / 1200V SiC Diodes

600V T&FS Si IGBT3s / 600V Si EmCon3 Diodes

Maximization of Heatsink Thermal Conductance / Weight (Volume) - Max. CSPI

а

о b

0

С

0

 ⁻ S = 19.3kVA
 - V_{DC} = 750V
 - f_{S,min} = 24kHz
 - T_J = 125°C
 - Foil Capacitor DC Link

Heatsink Optimization

Maximize Thermal Conductance / Weight (Volume)

Highest Performance Fan

Fin Thickness / Channel Width Optimization

34/63

Heatsink Optimization

Maximize Thermal Conductance / Weight (Volume)

- Highest Performance Fan
 Fin Thickness / Channel Width Optimization

Heatsink Optimization

n≠6 0.8 n=50 $n=1\emptyset$ R_{th} [K/W] 0.6 sub-optimum: n=16/k=0.60s=1.5mm/t=1.0mm0.4 $R_{th,sub} = 0.30$ Optimum optimum: $L \times b \times c = 80 \times 40 \times 40 \text{ mm}^3$ n=26/k=0.65Al with $\lambda_{th} = 210W/Km$ $CSPI_{\rm m} = -15.0 \frac{\rm W}{\rm K \, kg}$ -s=1.0mm / t=0.54mm $n = [6, 10, 14, \dots, 42, 46, 50]$ $R_{th,sub} = 0.26$ 0 + 0 0.2 0.4 0.6 0.8 1 k = s/(b/n)

n±34

1

- Highest Performance Fan
- Fin Thickness / Channel Width Optimization

Rectifier / Inverter η - γ -Pareto Front

- Switching Frequency Range 24...70 kHz
 Heatsink Temperature Range 55...100 °C (*T_{amb}* = 40°C)

3-Level Topology Does Not Show a Benefit

37/63

Power Electronic Systems Laboratory

System Overview

38/63

8kV_{DC}/750V_{DC} DAB Converter Design

Switches / Topology Transformer η-γ-Pareto Front —

DC/DC Converter Topology

- Bidirectional Energy Transfer Dual Active Bridge
 - Weight ≤ 25 kg
 - $f_s = 50...125$ kHz $\rightarrow f_{s,m} = 100$ kHz Phase-Shift Control ($\varphi = \pi/4$)

Implementation of Electronic Switches - SiC

DC/DC Converter Topology

- Bidirectional Energy Transfer Dual Active Bridge
 - Weight ≤ 25 kg
 - $f_s = 50...125$ kHz $\rightarrow f_{s,m} = 100$ kHz Phase-Shift Control ($\varphi = \pi/4$)

Implementation of Electronic Switches - SiC

10kV Si/SiC

Switch

SuperCascode

41/63

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Si/SiC Super Cascode Switch

➔ HV-Switch Controllable via Si-MOSFET

- * 1 LV Si MOSFET
- * 6 HV 1.7kV SiC JFETs
- * Avalanche Rated Diodes

➔ Ultra Fast Switching

Low Losses

➔ Parasitics

- * Passive Elements for Simultaneous Turn-on and Turn-off
- * Stabilization of Turn-off State Voltage Distribution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Si/SiC Super Cascode Switch

➔ HV-Switch Controllable via Si-MOSFET

- * 1 LV Si MOSFET
- * 6 HV 1.7kV SiC JFETs
- * Avalanche Rated Diodes

➔ Ultra Fast Switching

- ➔ Low Losses
- Parasitics
- * Passive Elements for Simultaneous Turn-on and Turn-off
- * Stabilization of Turn-off State Voltage Distribution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Selected Multi-Cell Converter Topology

► MV-Side Series-Connection / LV-Side Parallel-Connection

Winding Arrangement & Efficiency / Weight Optimization of Transformer

Transformer Design

- **MV-Winding Arranged Around Inductor Cores**
- Cooling Provided by Heatpipes Stacked Cores Scalable Arrangement

Optimization - Weight / Efficiency Trade-off

Transformer Optimization

Degrees of Freedom / Parameter Ranges

$$\vec{N}_{1} = [5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ \dots \ 39 \ 40]^{\mathrm{T}},$$

$$\vec{N}_{2} = \mathrm{round}(\vec{N}_{1} \cdot 1 \,\mathrm{kV}/750 \,\mathrm{V}),$$

$$\vec{n}_{\mathrm{tr,core}} = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 8 \ 10 \ 12 \ 14 \ 16 \ 18 \ 20]^{\mathrm{T}},$$

$$\vec{n}_{\mathrm{ind,core}} = [1 \ 2 \ 3 \ 4 \ 5 \ 7 \ 10]^{\mathrm{T}},$$

$$\vec{a}_{\mathrm{LVMV}} = [0.75 \ 1.0 \ 1.25]^{\mathrm{T}},$$

$$\vec{c}_{\mathrm{tr}} = [E30/15/7 \ E32/16/9 \ E42/21/20 \ E55/28/21 \\ E65/32/27 \ E70/33/32 \ UI93/76/30 \ UU93/76/30]^{\mathrm{T}}$$

$$\vec{c}_{\mathrm{ind}} = \vec{c}_{\mathrm{tr}}$$

Transformer η - γ -Pareto Front

Transformer Volt-Second Balancing - Series Capacitor or "Magnetic Ear" Control

Transformer Volt-Second Balancing – "Magnetic Ear

- Magnetic Ear Magnetized with 50% Duty Cycle Rectangular Voltage Winding
- Measured Aux. Current i_{aux} / Voltage v_m Indicates Flux Level
 Enables Closed-Loop Flux Control

System Overview

Overall System Consideration

Total Weight Overall Efficiency η-γ-Pareto Front

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Determination of Overall System Performance

• Consideration of the η - γ -Characteristics of the Partial Systems

Overall η-γ-Characteristic

$$\gamma = \frac{P_{\text{out}}}{m}$$

- **Efficiencies of the Partial Systems Need to be Taken into Account**
- $P_D/P_R = \text{Overrating Ratio} (8x16kW/100kW)$

Overall System Performance

Efficiencies and power-to-weight ratios at the 2 design points	
marked in Fig. $24(a)$ (calculated for nominal operation).	

Total system	Generator,	VSR, and DAB converte	er
1.07131//1	Generator:	$\gamma_{\rm G} = 3.11\rm kW/kg,$	$\eta_{\rm G}=95.4\%$
$\gamma = 1.37 \text{ KW/Kg}$ n = 90.0%	VSR:	$\gamma_{\rm VSR} = 18.3\rm kW/kg,$	$\eta_{\rm VSR}=98.6\%$
η = 00.070	DAB:	$\gamma_{\rm DAB} = 4.60\rm kW/kg,$	$\eta_{\rm DAB}=97.1\%$
1.00 hW//h	Generator:	$\gamma_{\rm G} = 2.14 \rm kW/kg,$	$\eta_{\rm G} = 96.9\%$
$\gamma = 1.00 \text{ kW/kg}$ $\eta = 91.7\%$	VSR:	$\gamma_{\rm VSR} = 18.3\rm kW/kg,$	$\eta_{\rm VSR}=98.6\%$
	DAB:	$\gamma_{\rm DAB} = 3.53\rm kW/kg,$	$\eta_{\rm DAB}=97.4\%$

 η (%)

Final Step: System Control Consideration

Electric System Control

Stability Reference Response —— Disturbance Response ——

System Control

- **Control of Flight Trajectory / Max. Energy Generation**
- Generator (Motor) Speed / Torque Control
- ► etc.
- **Control of DC Voltage Levels is Mandatory !**

Simplified Control-Oriented Block Diagram of the Electric System

54/63

Control Block Diagram

- Ground Station Controls the Tether Voltage
- ► Control Objectives: LV DC Bus 650...750V; MV (Tether) < 8kV

Only Tether Voltage at Ground Station is Measured (*I*_{Th} Feedforward)
 Motor AND Generator Operation Must be Considered

55/63

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Voltage Control Reference Step Response

Overshoot Could be Avoided with Reference Form Filter

57/63

Voltage Control Disturbance Response

7.5

7.4

7.3

7.2

0

0.01

■ Motor Operation $100kW \rightarrow 0$ ■ Gen. Operation $-100kW \rightarrow 0$

Conclusions

- AWTs are Basically Technically Feasible
- ► AWTs Realization Combines Numerous Challenges
 - Aircraft Design
 - MVDC Transmission
 - MV/HF Power Electronics
 - etc.
- AWTs are a Highly Interesting Example for η-γ Trade-off Studies
 AWTs are Examples for Smart Pico Grids or MEA Power System Analysis
- AWTs Could Teach Students to Think "Out-of-the-Box"

Future Prospects

Source: M. Diehl / K.U. Leuven

Example for Students to Think "Out-of-the-Box" !

Future Prospects

Source: M. Diehl / K.U. Leuven

Example for Students to Think "Out-of-the-Box"!

Thank You!

Questions ?

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

