

ECPE Roadmap 2025 Workshop

Munich, March 26, 2015

Roadmap Power Electronics 2025

J.W. Kolar / E. Hoene* / Th. Harder**

Swiss Federal Institute of Technology (ETH) Zurich * Fraunhofer IZM, Berlin ** ECPE, Nuremberg

Summary of 1st Roadmap Team Meeting

- → Magnetic Components are the Highest Cost Factor in Power Supplies
- → EMI and Semiconductor Oscillations are #1 Risk for Time to Market
- → Robustness is Often More Important than Reliability
- → Modularity Made it Never Into the Market
- \rightarrow External Manufacturing Results in Too High Costs
- → Only 6-8 Weeks Development Time Requires Finished Building Blocks
- \rightarrow Need for Fast Simulation Models
- → Digital Control Issues (Safety Requirements / Redundancy)
- → Efficiency is also a Political Issue / Depends on Standardization
- → Efficiency is not a Selling Argument (only for Last Person in Supply Chain)
- → Ranking: Costs / Reliability / Ease of Manufacturing / Robustness

\rightarrow Some Challenges / Limitations Identified

Jan. 2014

Summary of 2nd Roadmap Meeting

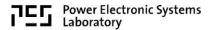
... see Summary presented by Th. Harder

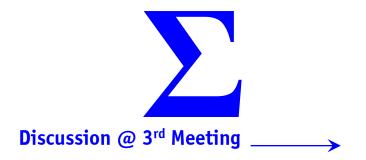
ECPE Roadmap 2025 Workshop

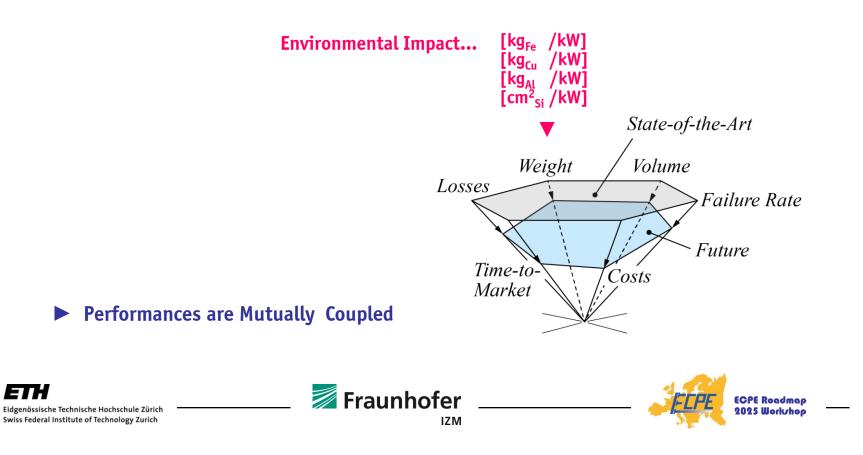
Summary of 3rd Roadmap Team Meeting

- → 2025 Performance Target Values
- → Evaluation of Current Research Level Technologies
- → Enabling Technologies
- \rightarrow Technology / Research Gaps

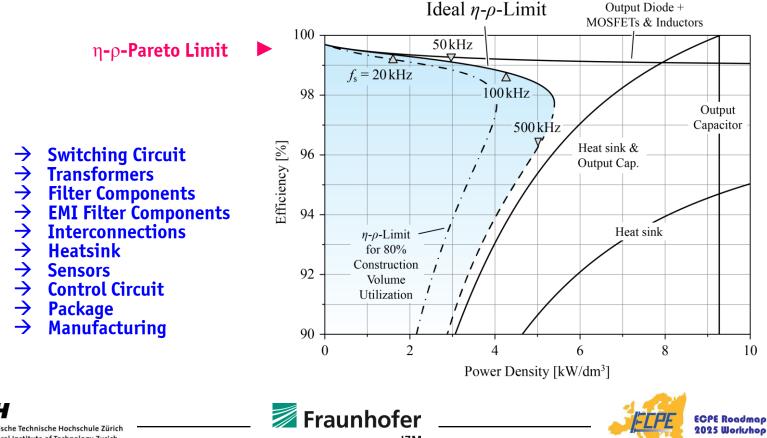
... see Following Summary







Key Performance Indices which Must be Considerably **Improved until 2025**


- \rightarrow Costs
- \rightarrow Power Density
- \rightarrow
- Efficiency Reliability / Robustness Time-to-Market

4/34

 \rightarrow

Main Components / Concepts / Processes Determining the Performance Limits

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

2025 Workshop

Ston #1

Roadmap Approach

	Consid
Step #2	 → Curre → High → High Consider Order of a S
Step #3	→ "Enat Select

Step #4

Define 2025 Performance Targets \rightarrow dering Past Trend Lines

ent Research Level Technologies

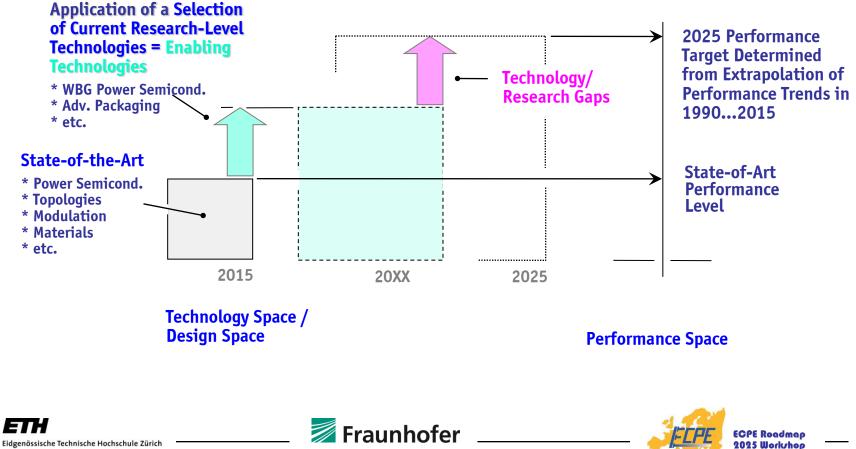
- **Switching Frequency Operating Temperature**
 - dered for Each Component in to Check for Potential Improvements elected Performance Index

bling Technologies"

ted Subset of "Current Research Technologies" which Potentially Enable a **Considerable Performance Improvement**

\rightarrow "Technology / Research Gaps"

... Technologies Crucial for Reaching the 2025 Performance Target but Currently Not Considered in Research



ECPE Roadman

Swiss Federal Institute of Technology Zurich

Roadmap Approach

IZM

General Remark

- → Pragmatic Approach
- → Only Already Known Research Concepts are Considered
- → No Speculations on Unknown Disruptive Concepts (e.g. Nanomaterials)
- → Identified Barriers are Indicating Future Research Needs
- → Trivial Requirements (e.g. Higher Energy Density of Caps) are not Listed

Power Density - Expected Impr. until 2025 - Factor 2 ... 5 (10) **Filter Components** (\rightarrow Minimize Volume) \rightarrow Increase Switching Frequency **Challenges:** * Higher Switching Losses * Higher HF Losses of Passives / Thermal Managmnt * Increased EMI Noise (for Hard Switching) * Low Switching Loss WBG Semiconductors **Enablers:** * Adv. Inductor Concepts (e.g. Distributed Gaps) * Adv. Packaging – Min. Parasitics (Gate & Power) * ZVS / Resonant Converter Concepts * High Clock Frequency Digital Control * Maq. Materials (Permeability /Losses at HF) **Barriers:** * Conductor Types / Winding Arrangements * Thermal Management * Adv. Design Tools (Layout, Magnetics) * Adv. Measurem. Tools Integrated with Simulation * Engineering Experience * Interleaving for Frequency Multiplication **Detour: Remark:** * Only Basic Converter Topologies are of Interest are Taken from the List of "Current Research Technologies" \rightarrow "Enablers" \rightarrow "Barriers" are Indicating "Technology Gaps"

ightarrow Increase Operating Temp.	Challenges:	 * Reliability of Interconnection Technologies * Higher Losses
	Enablers:	 * High Temperature Passive Components * Interconnection Technologies for Higher Temp. * WBG Semiconductors
	Barriers:	* Requirement to Enable all Used Components and Technologies for High Temp.
	Remark:	* Especially Effective for High Temp. Environment
\rightarrow Change from CCM to DCM	Challenges:	* Higher Conduction Losses * Higher Filtering Effort
	Enablers:	 * Low On-Resistance Power Switches (CoolMOS, WBG) * Advanced Digital Control * Interleaving for Red. of Filter Effort
	Barriers:	 * New Circuit Topologies / Modulation Schemes * Magnetic Materials (High Flux Swing, High Frequ.) * Conductor Types / Winding Arrangements
\rightarrow etc., etc.	Remark:	* Only Basic Conv. Topologies with Modified Control / Min. Auxiliary Circuits are of Interest

■ EMI Filter (→ Minimize Volume)	
ightarrow Increase Switching Frequ. Beyond 500kHz	Challenges: Enablers: Barriers: Remark:

 \rightarrow etc., etc.

••••

....

Efficiency

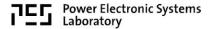
- Expected Loss Reduction until 2025 Factor 2 ... 3
- Evaluation of Contributions to Loss Reduction of the Main Components Employing Current Research Level Technologies

Utilized Current Research ConceptsRequired Additional New Technologies

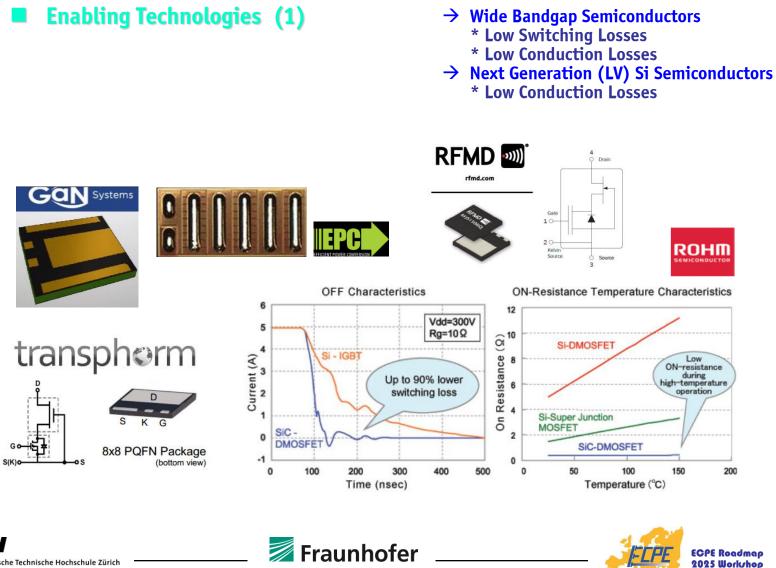
- \rightarrow Switching Circuit and Gate Drive
- \rightarrow Transformers
- → Filter Components
- → EMI Filter Components
- \rightarrow Heatsink
- \rightarrow Interconnections
- \rightarrow Sensors
- \rightarrow Control Circuit
- Enabling Technologies
- Technology Gaps

Costs

- Expected Reduction until 2025 Factor ... 2
- Evaluation of Contributions to Loss Reduction of the Main Components Employing Current Research Level Technologies


Utilized Current Research ConceptsRequired Additional New Technologies

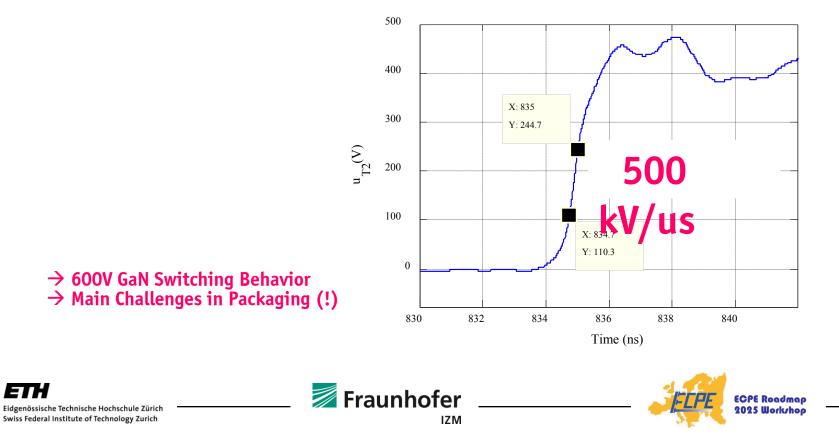
- \rightarrow Switching Circuit and Gate Drive
- → Transformers
- → Filter Components
- → EMI Filter Components
- \rightarrow Heatsink
- \rightarrow Interconnections
- \rightarrow Sensors
- \rightarrow Control Circuit
- Enabling Technologies
- Technology Gaps



ECPE Roadmap 2025 Workshop

IZM

14/34

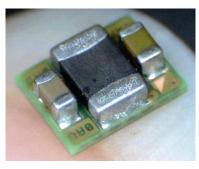


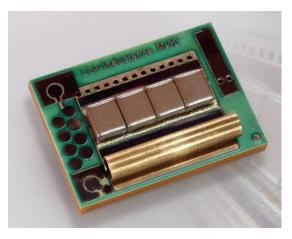
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

IZM

Enabling Technologies (2)

- → Wide Bandgap Semiconductors * Low Switching Losses
 - * Low Conduction Losses
- \rightarrow Next Generation (LV) Si Semiconductors
 - * Low Conduction Losses


Enabling Technologies (3)


- → Adv. Packaging of Power Semicond (Chip Scale etc.) * Low Power Path Parasitics
 - * Low Gate Drive Parasitics
 - * Low Coupling of Power and Gate Drive Path
 - * Low Thermal Resistance
 - * 3D Interconnection
 - * PCB Embedding (incl. Therm. Management)
 - * Minimizing DM and CM EMI (Integr. Switch. Cell)

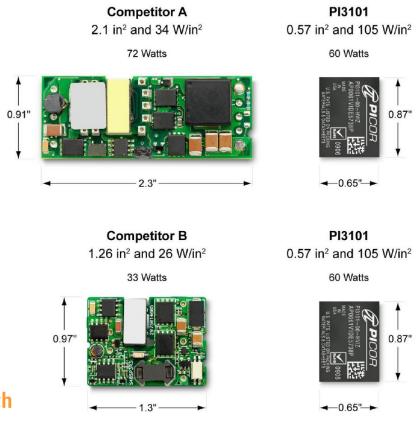
Ultra Low Inductance Package

DC/DC Converter with Embedded Chip

Enabling Technologies (4)

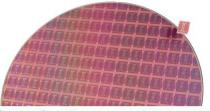
- → Heterogeneous Integration
 - * Switching Cell in a Package * Drivers with Integrated Power Supply * DC/DC Converter in a Package

X-Ray Image (Video)



Enabling Technologies (5)

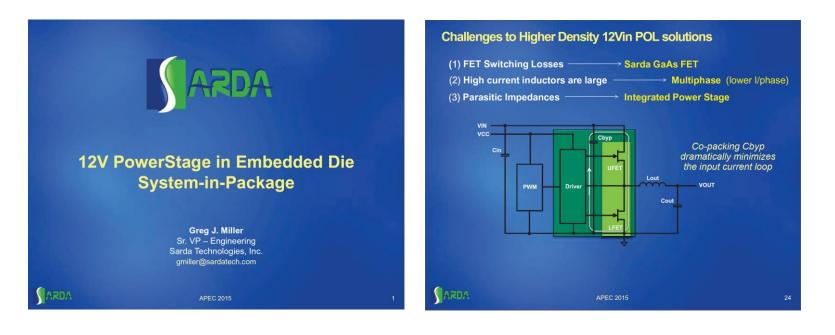
 \rightarrow Heterogeneous Integration



- Enabling Technologies (6)
- \rightarrow Heterogeneous Integration

Information Processors Are Sawn Out of Scalable Wafers

ChiP Power Components Are Sawn Out of Scalable Magnetic Panels

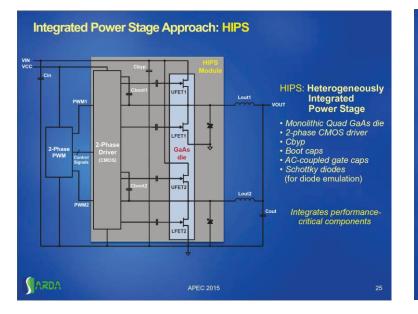


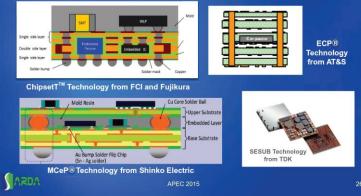
ECPE Roadmap 2025 Workshop

Enabling Technologies (7)

\rightarrow Heterogeneous Integration

Presented @ APEC 2015



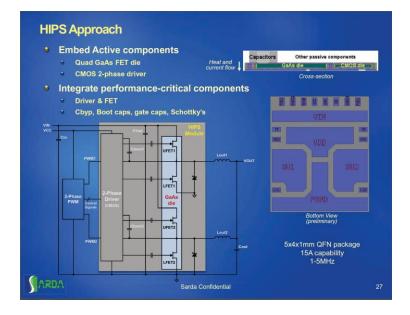

Enabling Technologies (8)

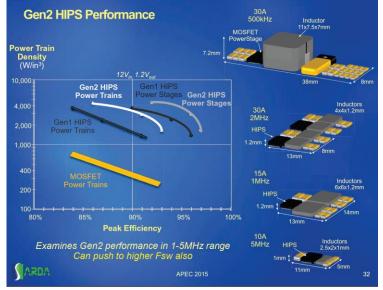
\rightarrow Heterogeneous Integration

HIPS Module Available technology to enable compact multi-chip HIPS module: **Embedded Die in Substrate**

Two motivations: (1) Performance (minimize parasitics for multi-MHz operation) (2) PowerStage package size

Presented @ APEC 2015





Enabling Technologies (9)

→ Heterogeneous Integration

Presented @ APEC 2015

Enabling Technologies (10)

- \rightarrow Adv. Inductor Concepts
 - * Magnetic Integration (CM/DM)
 - * Multi-Gapped Magnetic Cores
 - * Constant Flux Density Magnetic Cores
 - * Integrated Cooling
 - * Parasitic Capacitance Cancellation
 - * 3D Interconnection

\rightarrow Adv. Capacitor Concepts * Low Parasitic Ind. 3D Interconnection

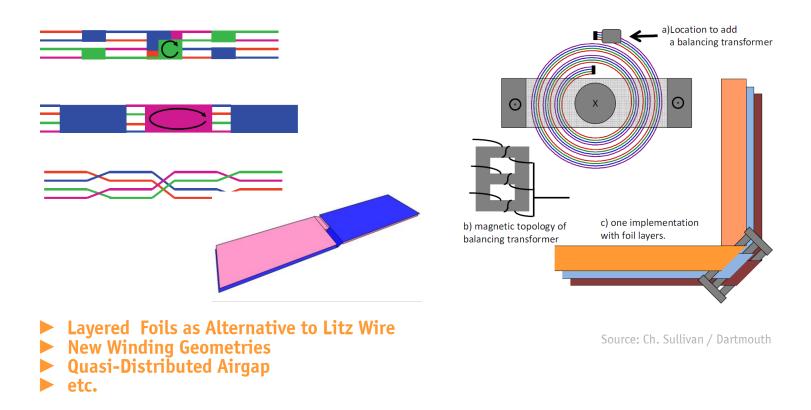
* Integrated Cooling / High Current Concepts

\rightarrow Adv. Component Interconnection Concepts * Low DC and HF Loss Interconnection

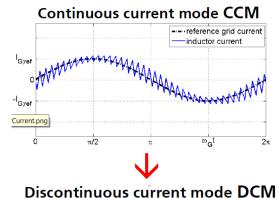
* Integrated Concepts (Cooling, Sensing)

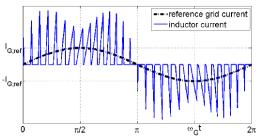
\rightarrow Adv. Cooling Concepts

- * Heat Spreading Concepts
- * Two-Side Cooling
- * Two Phase Cooling
- * Integr. Concepts (El. and Thermal Interconn.)


\rightarrow Adv. Low Frequency Energy Buffer Concepts * Replace Electrolytic Cap. by Conv. And High ∆v Cap.

- Enabling Technologies (11)
- \rightarrow Advanced Inductor Concepts




ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Enabling Technologies (12)

→ Digital Control (Moores Law)

- * High Calc. Capability / Monitoring / Adv. Control
- * High Clock Rates / High Sampling Frequ.
- \rightarrow Change from CCM to DCM Operation
 - * DCM Inductors Store Less Energy / Lower Vol.
 - * Facilitates ZVS / Res. Transition Operation
 - * Workaround for Slow Passives Improvement
 - * i=0 Instead of Cont. Current Sensor
- \rightarrow Advanced Modulation
 - * Noise Shaping Variable Switching Freugnecy
- \rightarrow Active ZVS / Resonant Operation
 - * Low Switching Losses
 - * Low EMI / No Free Ringing
- → Interleaving / Multi-Cell / Multi-Level Converters
 - * Increase of Effective Switching Frequency
 - * Cancellation (DM-CM Transfer) instead of Filtering
- \rightarrow Advanced Control
 - * Trajectory-Based Control
 - * Predictive Control

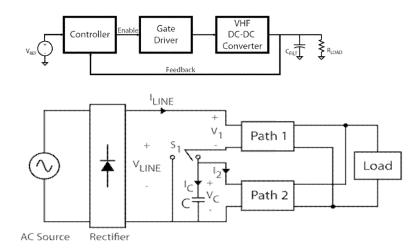
ECPE Roadmap 2025 Workshop

Enabling Technologies (13)

Bringing Together Advanced Circuit Concepts / Semiconductors / Packaging \rightarrow

* World Smartest Laptop Charger

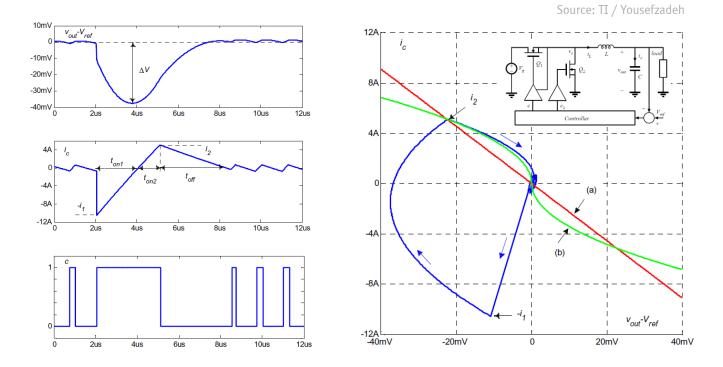
* World Smallest Laptop Charger



Enabling Technologies (14)

→ Bringing Together Advanced Circuit Concepts / Semiconductors / Packaging

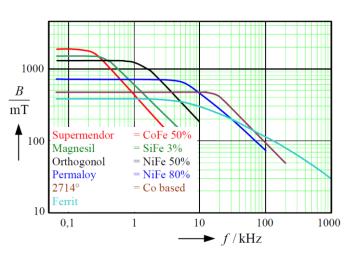
* World Smallest Laptop Charger

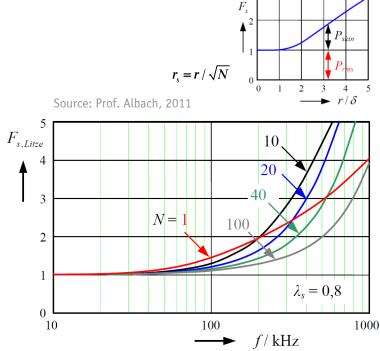


Enabling Technologies (15)

\rightarrow Predictive Control and Optimal Trajectory Control

Consider Individual Switching Instants vs. Average over Numerous Swiching Cycles

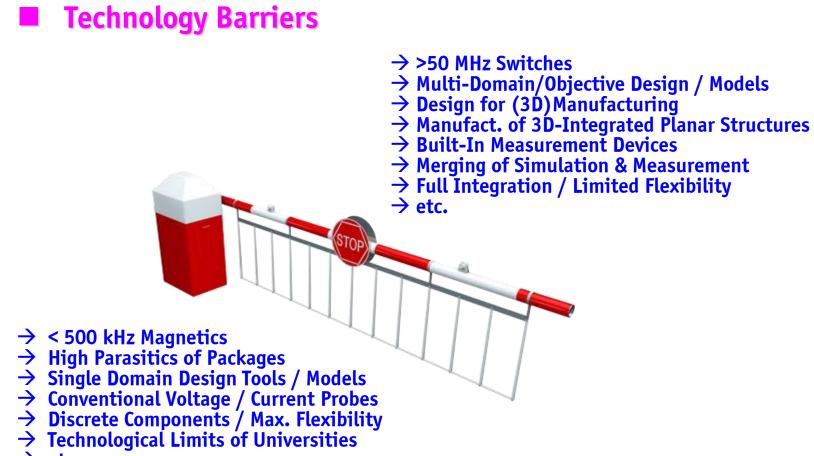



Technology Barriers

- **Example: Serious Limitation of Operating Frequency by HF Losses**
- Core Losses (incr. @ High Frequ. & High Operating Temp.) Temp. Dependent Lifetime of the Core Skin-Effect Losses

- **Proximity Effect Losses**

Adm. Flux Density for given Loss Density

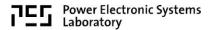


Skin-Factor F_s for Litz Wires with N Strands

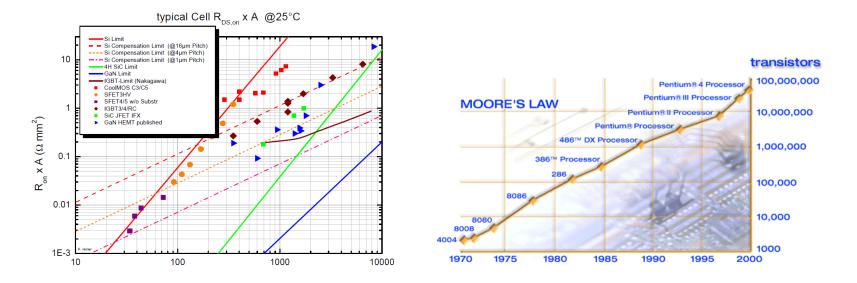
- \rightarrow etc.
- Chicken & Egg Problem of New Technologies / Identification of Killer Applications

Example of Advanced Power Electronics Design Platform

3D-Electromagn. 3D-Thermal Fast Circuit Parasitics Simulator FEM Extraction Solver **HF Magnetics EMC** Filter Reliability Heatsink Design Design Analysis Design Toolbox Toolbox Toolbox Toolbox Post Processing **Design Metrics Calculation**


Input Topology | Device Models | Control Circuit | 3D-Geometry | Materials

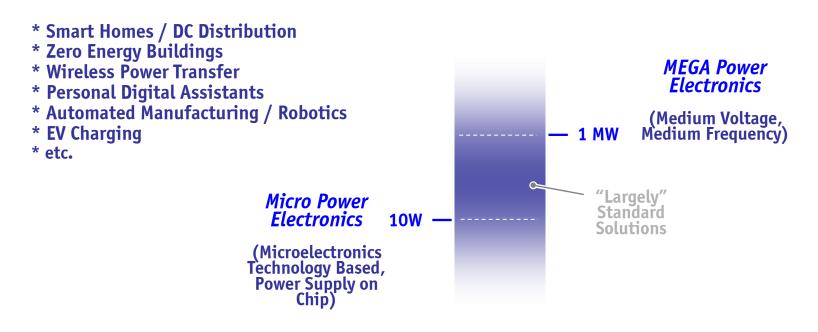
- Modeling & Design
- Circuit Simulation
- Thermal Simulation
- EM Simulation



Summary (1)

- WBG Semiconductor Technology Microelectronics (Moore's Law)
- Adv. Design / Adv. Packaging (Manufacturing) / Adv. Measurement

\rightarrow Enabling an up to Factor of 10 Performance Improvement



ECPE Roadmap 2025 Workshop

Summary (2)

Considerable Future Extension of Power Electronics Application Area

- Bridge to Power Systems
- Establish (Closer) University / Industry (Technology) Partnerships
- Establish Cost Models, Consider Reliability as Performance

Thank you!

