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■ Introduction 
■ AC vs. DC
■ 1-Φ vs. 3-Φ Power Transmission
■ Power Transistors & Packaging
■ Efficiency & Multi-Objective Optimization
■ Future Technology Development
■ Conclusions  

Outline
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Introduction

A Leap Back in Time 
to the Beginnings of Electrical 
Engineering 



1st Industrial Revolution  Industry 1.0
■ 1760  1840
■ Introduced by Numerous Key Inventions  
■ New Machines Facilitating Adv. Production & Transportation (Locomotives, Ships) 
■ Coal Fired Steam Engine (J. Watt, 1776) as Main Power Source

● Immense Growth in Coal Consumption / Massive Air Pollution  UK Public Health Act (1875)
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■ 1840  1880
■ New Steel Mass Manufacturing Processes (H. Bessemer, 1856)
■ Electrical Technology Developed / Main Source of Power & Used in Adv. Production 
■ First Giant Industrial Corporations (e.g. GE, 1892)

2nd Industrial Revolution   Industry 2.0

● Steam Turbine Driven DC Generator / Dynamo (“Long-Legged Mary Ann”) - T.A. Edison, 1880 
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Voltage Step-Up/Step-Down



Losses of DC Power Systems  

● Quadratic (!) Dependency of Losses on Voltage Level   
● Allows Massive Reduction of Conductor Cross Section with Increasing Voltage Level 

■ Increase of Transmission Line Resistance with Transmission Distance    
■ Red. of Resistance for Fixed Voltage only Through Larger Conductor Cross Section

Conductor Cross Sections 
for Same Losses




 Transmission Losses 
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  



Voltage Step-Up/Down   AC Power System

■ Voltage Transformation Based on “Electromagnetic Induction” (M. Faraday, 1831)
■ First Transformers Employing Toroidal Cores Starting 1878  
■ Initially Different Operating Frequencies (e.g. 133Hz)


 

● 1st Transformer Construction Allowing Easy Manufacturing (W. Stanley / G. Westinghouse) 
● 2.2kV  11kV for Long Distance 3-Φ Power Transmission (Niagara Falls  Buffalo, 1896) 


 

 Applied Voltage Determines Rate of Change of Magn. Flux
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■ Main Advantages

— Inexpensive
— Purely Passive
— Highly Robust / Reliable
— Highly Efficient 
— Short Circuit Current Limitation

Source: www.faceofmalawi.com
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Classical Transformer Properties   

— Magnetic Core Material * Silicon Steel
— Winding Material     * Copper or Aluminium
— Insulation/Cooling * Mineral Oil or Dry-Type
— Operating Frequency * 50/60Hz (El. Grid, Traction)  or 16.7Hz (Traction)                                           



Scaling of 1-Φ Transformers (1) 

Pt  …. Rated Power
kW …. Window Utilization Factor  
Bmax ...Flux Density Amplitude
Jrms… Winding Current Density  
f  .…. Frequency





● Economic Advantage of Large Systems   “The Bigger the Better”

— Magnetic Core 
Cross Section

— Winding Window

■ Area Product 

■ Relation of Applied Voltage and Magnetic Flux 




    


  


 

 
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Scaling of 1-Φ Transformers (2) 

— Area Product

— Scaling of Power   
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■ Rated Power of Transformers

— Scaling of Volume / Mass / Costs   

— Scaling of Core & Wdg Losses

● Economic Advantage of Large Systems   Lower Relative Costs   &  Higher Efficiency  (!) 

   

 

  

 



■ Core Losses

● Losses prop. to  Volume  /  Heat Transfer to Ambient prop. to Surface
● Requires Adv. Cooling of Higher Power Systems for Avoiding Thermal Limitation
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■ Winding Losses 

— Hysteresis Losses (W/cm3)

— Eddy Curr. Losses (W/cm3) 

 

 


   
 

 


   



  










Scaling of 1-Φ Transformers (3) 



Scaling of 1-Φ Transformers (4) 

■ Thermally Limited Designs   Allowed Increase of Losses Coupled to Increase of Surface

● Volume prop. to Rated Power   Constant Power Density (!) 

— Scaling for Power Rating     

10/93

— Surface Area 

— Winding Losses 


— Core Losses 










 

— Winding Current 







■ Comparison of  Skeleton / Metabolism  etc.  of Animals 
of Different Physical Sizes (e.g. Cat & Elephant)

● First Systematic Studies by Galileo Galilei (1564-1642)  
● Diameter of Bones Disproportional to Length 

Scaling Applied to Biology

Source: getdrawings.com/estuary-drawing

— Mass / Weight of an Animal    

 

— Required Diameter of the Bones 

— Area-Related Strength of Bones 


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3-Φ AC Power Transmission 

Lower Realization Effort
Constant Instantaneous Power Flow 
Generation of Constant Torque



Advantages of 3-Φ Power Transfer (1)  
■ Comparison for 1-Φ Power Transfer to  3 x 1-Φ System  &  Direct 3-Φ System


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● 3-Φ System   Reduction of Losses and Conductor Material Effort by Factor of 2 (!)
● “Interleaving” of the Phases also Employed in Pulse-Width Modulated Converters 



Advantages of 3-Φ Power Transfer (2)  

13/93

■ Comparison of Instantaneous Power Flow of 1-Φ and Direct 3-Φ System

● 3-Φ System   „Interleaving“ of the Phases Results in Const. Instantaneous  Overall Power Flow 
● No Storage Required for 3-Φ AC/DC Conversion  &  Const. Torque Generation of 3-Φ Machines  

— Voltage & Current Zero Crossings 
Power Fluctuation of 1-Φ System  
with 2x Supply Frequency   

   

   



Classical Locomotives

— Catenary Voltage 15kV  or 25kV
— Frequency 16.7Hz  or  50Hz
— Power Level 1…10MW  typ.

● Transformer Efficiency    90…95% (due to Restr. Vol., 99% typ. for Distr. Transf.)
Current Density           6 A/mm2 (2A/mm2 typ. Distribution Transformer)
Power Density             2…4 kg/kVA

!

Source: www.abb.com

■ 1-Φ Overhead Line Supply Used for Simplicity / Rail for Current Return 
■ 16.7Hz Due to Supply Frequ. Related Commutation Problem of Early 1-Φ AC Commutator Motors
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Source: www.yacht-chartercroatia.com

AC vs. DC
Power Transmission 

T.A. Edison  vs. N. Tesla
DC Advantages for Very Long 
Distance Transmission



„The War of Currents“

— AC Electric Chair  

■ DC Current Favored by Edison (Safety) / AC Technology Favored by Westinghouse (Transmission)
■ Killing of Elephant “Topsy” (1903) by Electrocution to Demonstrate the Deadly Impact of AC 
■ AC Dynamo Powered “Electric Chair” as Alternative to Hanging  “Westinghoused” 

15/93

— Documentary Film by Edison Film Company 

● Finally Breakthrough of AC Technology Due to Missing DC-Transformer“Edisons´ Missing Link”



AC vs. DC Power Transmission (1) 
■ DC Voltage  Max. Utilization of Isol. Voltage  Lower Losses  & Less Conductor Material (!)

● Transformation of DC Voltage Level Requires Power Electronics Interfaces (!)

   

 
  
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1944 !
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AC vs. DC Power Transmission (2)

● Low-Frequency AC (LFAC) as (Purely Passive) Solution for Medium Transmission Distances 

■ AC Cable – Thermal Limit Due to Cap. Current @ x = 0

■ HVDC Transmission – Advantageous for Long Distances  Costs

Losses

Cable

Terminal

Distance
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Transition to Modern 
Power Electronics 

Mercury Arc Valves / Thyratrons
Power Semiconductors  

1958  



Electronic Transformer - History   
■ System Using Mech. Switches Patented Already in 1913 (!)
■ Mechanical Sw. Tubes  Mercury Arc Valves  Solid State Switches 

1913 ─ P.M.J. Boucherot 1928 ─ D.C. Prince  
1944 ─ E.F.W. Alexanderson  et al.                                   1968 ─ W. McMurray

● “Transformer of Cont. Current” / “DC Transformer” / “Electronic Transformer” 

►

►

►►

19/93



1970!
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● Transistor/Diode-Based “Electronic Transformer”  
● AC or DC  Voltage Regulation  &  Current Regulation/Limitation/Interruption



Power Semiconductor Evolution

21/93

● Si-Thyristor Si-Bipolar Transistor  Si-Power MOSFET  Si-IGBT  SiC/GaN-Transistor  t.b.c.

■ First Commercial Si Thyristor (Silicon Controlled Rectifier – SCR) Introduced in 1958 by 
■ Unipolar and Bipolar Power Semiconductors 
■ Development Status in 1995 

Spreading of Si 
Power Semiconductor 

Technology
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■ Power MOSFETs of Higher Blocking Capability   Drift Layer Determines On-State Resistance 
■ Drift Layer Thickness Dependent on Blocking Capability  

Unipolar Si Power Semiconductors (1)

— Blocking Voltage   

— Relation of Doping and E-Field Gradient   

— On-State Resistance  
 



— Spec. On-Resistance  





 — “Silicon Limit”



● Electrical Conductivity Provided by Majority Carriers  

23/93

Unipolar Si Power Semiconductors (2)
■ Super-Junction Power MOSFETs (1997)   Breaking the Silicon Limit  - RDS(on) ≈ UDS,BR

1.0 (!)
■ Highly-Doped n-Region / p-Columns Compensating the Current Conducting n-Charge
■ Space Charge Layer along pn-Junction for UDS > 50V  / Depleted Voltage Sustaining Drift Zone 

Source: J. Lutz et al.  



Si - Power MOSFET Development 

600V  MOSFET Technology

24/93

● Cont. Further Improvement / Main Challenges also in Low L/Low Rth Packaging  

■ Super-Junction Technology  Disruptive Improvement / Decrease of RDS,(on)

Source:   





Si - Isolated Gate Bipolar Transistor (IGBT)

25/93

● IGBT:  pnp-Bipolar Junct. Transistor Driven by n-Channel MOSFET in Pseudo-Darlington Structure  

■ MOSFET Structure Extended with Drain-Side p+ Layer  Minority Carrier Injection into n- Layer 
■ Conductivity Modulation    Lower On-State Voltage @ High Blocking Voltage Rating
■ Lifetime of Min. Carriers   Stored in pnp-BJT Base & Resulting in “Tail Current”/Sw. Losses

Source: IRF



Si - IGBT Development (1)

26/93

Source:   

● Reverse Conducting (RC) IGBT Monolithically Integr. Free-Wheeling Diode (Spec. Anode Structure)   

■ 1988  Punch-Through (PT)            High Costs  & Neg. Temp. Coefficient (TK) 
■ 1990  Non-Punch Through (NPT)  Rel. High On-State Voltage, pos. TK
■ 2000  Field Stop (FS) Layer          Low Losses (Tail Current), pos. TK





27/93

Si - IGBT Development (2)
■ Field Stop (FS) Layer    Thinner Wafers  &  Improved Sw. Performance Comp. to NPT Structure
■ FS Layer & Trench Gate  Improved Saturation Voltage VCE,sat & Turn-Off Energy Eoff

Source:   



● Reverse Conducting (RC) IGBT Monolithically Integr. Free-Wheeling Diode (Spec. Anode Structure)   



Modern Switch-Mode
Power Conversion  

Pulse-Width Modulation 
Time/Frequency Domain & Filtering

Parallel & Series Interleaving

Source: www.gograph.com







Pulse Width Modulated Converters
■ Basic Concept  

28/93

 

● Switch-Mode Voltage Formation and Subsequent Filtering 
● Higher Sw. Frequency    Smaller Filter Components (Limited by Sw. Losses, Signal Processing etc.) 



Increasing Switching Frequency

■ Reduction of EMI Filter Volume for Increasing  Sw. Frequency

● Sw. Frequ. Limit  Due to Sw. Losses (Heatsink Vol.), Inductor Losses, Signal Processing Delays etc.
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■ Low Inductance /  Triang. Curr. Mode  Zero Voltage Turn-Off AND Zero Voltage Turn-On (ZVS) 
■ Increase of Conduction Losses  Especially @  Low Load  /  Residual ZVS Losses of Si-Devices

Soft-Switching Operation

● Requires Certain Voltage Headroom for Avoiding Very Low Sw. Frequencies
● Wide Variation of Sw. Frequ.  Spreading of EMI Noise &  Red. Filter Effort / Fast Sign. Processing

30/93





■ Multiplies Sw. Frequ.  /  Reduced Ripple @ Same (!) Switching Losses  &  Incr. Control Dynamics

Parallel Interleaving (1)

31/93

! !

 


 

 



N = 4

● Control Implementation Benefits from Improving Digital IC Technology   
● Redundancy  Allows Large Number of Units without Impairing Reliability
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Parallel Interleaving (2)

■ Multiplies Sw. Frequ.  /  Reduced Ripple @ Same (!) Switching Losses  &  Incr. Control Dynamics

 


 

 




● Control Implementation Benefits from Improving Digital IC Technology   
● Redundancy  Allows Large Number of Units without Impairing Reliability

N = 4



● Massive Reduction of Filter Capacitance  C → C/64    – OR – Inductance  L → L/16


Multiplication of 

Switching Frequency @ Same
Switching Losses
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Parallel Interleaving (3)

■ Output Current Ripple Cancellation  



  

 






Series Interleaving (1)
■ Example of  Flying Capacitor Converter ─ Breaks the Frequency Barrier 

─ Breaks the Silicon Limit 1+1=2 NOT 22=4 (!)
─ Breaks Cost Barrier - Standardization 
─ Extends LV Technology to HV

34/93

● x 2.5 Dependency of  RDS,(on) on Blocking Voltage   Adv. of Series Connection of LV MOSFETs

 





 ! !



● Excellent Concept for Building Extreme Efficiency Ultra-Compact Converters

■ Series Connection of LV MOSFETs (or LV Cells) Effectively  BREAKS the Si-Limit (!)

►
►

– Scaling of Specific 
On-State Resistance

Assumption: 

Chip Area of each LV Chip 
Equal to the Chip Area of 
the HV Chip

35/93

Series Interleaving (2)

  



■ Dramatically Reduced Switching Losses (or Harmonics) for Equal Δi/I    and dv/dt

● Transistors Could Operate @ VERY Low Sw. Frequency (e.g. 20kHz)  Low Sw. Losses / High Eff. 
● Alternative Operation with High Effective Sw. Frequency  Minimization of Filter Components 



36/93




Series Interleaving (3)

N = 1 N = 4



Components & Packaging
Wide Bandgap Semiconductors

Packaging

Source: HITACHI
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■ Wide Band Gap / High Tj,max
■ High Critical E-Field of SiC  Thinner Drift Layer 

● Massive Reduction of Relative On-Resistance (!)  High Blocking Voltage Unipolar Devices 

SiC Power Semiconductors






For 1kV:





 Advanced Packaging (!)  Moore's Law       

■ WBG Semiconductor Technology     Higher Efficiency, Lower Complexity
■ Digital Signal Processing                Fully Digital Control / Computing Power / Flexibility 

SiC & Digital Control   Technology Push

+
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Source:  M. Bakran / ECPE 2019

SiC-MOSFETs vs. Si-IGBTs

● Extremely High  di/dt  & dv/dt   Challenges in Packaging / Motor Isolation Stress / EMI etc.  

■ Si-IGBT           Blocking Voltages up to 6.5kV / Rel. Low Switching Speed 
■ SiC-MOSFETs   Blocking Voltages up to 15kV (1st Samples) / Factor 10…100 Higher Sw. Speed



■ Allowed Ls Directly Related to Switching Time ts   




● Parallel Interleaving Allows to Split-Up Large Currents  Increase of Z / Allows Faster Switching

40/93

Effect of Commutation Loop Inductance 

 
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Effect of Switch-Node Capactitance

■ Allowed Cp Directly Related to Switching Time ts 

● Series Interleaving for Split-Up of Large Voltages    Decrease of  Z / Allows Faster Switching

 




 
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Impedance Matching 

■ Direct Parallel/Series Connection of Switches/Bridge-Legs  
■ ISOP / IPOP / ISOS / IPOS Conn. of Isol. Conv. Modules
■ Also Allows Heat Spreading & Economy of Scale

● Series Interleaving / 
Split-Up of Large 
Voltages  Decrease 
of Z / Allows Faster 
Switching

● Parallel Interleaving / 
Split-Up of Large 
Currents  Increase 
of Z / Allows Faster 
Switching



Efficiency Analysis
Loss Components 

Efficiency Maximum

Source: www.clipground,com



Influence of Loss Components on 
Efficiency Characteristic

… CE,eq MOSFET  Losses
Auxiliary

… Diodes … RDS(on) MOSFET 
Inductor Winding

43/93

   



     



Efficiency Maximum

@  Maximum Efficiency:                                Equal  Const. &  Quadratic Losses

►
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Influence of Chip Area on Efficiency

● Part Load Efficiency Benefits from  ASi < ASi,opt  

45/93

■ Larger Chip Area  Lower On-Resistance / Cond. Losses   BUT Higher Cap. Sw. Losses
■ Optimal / Minimum Total Losses for Opt. Chip Area (Dependent on Sw. Frequency)

►

►



■ Efficiency Optimal Phase-Shedding
■ Maximization of Part-Load Efficiency  

    



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Parallel Operation of Sub-Systems

● Features Phase-Shedding – Equiv. to Adjust. Si-Area!      Part Load Efficiency
● Features Cancellation of Harmonics                                  Power Density & Efficiency



Heat Sink Properties
Loss-Determined 

Power Density Limit 

Source: www.seton.com



■ Design / Build the 2kW 1-Φ Solar Inverter with the Highest Power Density in the World
■ Power Density > 3kW/dm3 (50W/in3)
■ Efficiency    > 95%
■ Case Temp.  < 60°C
■ EMI  FCC Part 15 B

● Push the Forefront of New Technologies in R&D of High Power Density Inverters

!

!

!

!
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The Grand Prize

● Timeline       – Challenge Announced in Summer 2014
– 2000+ Teams Registered Worldwide
– 100+ Teams Submitted a Technical Description until July 22, 2015
– 18 Finalists (3 No-Shows)

$1,000,000

■ Highest Power Density (> 50W/in3)
■ Highest Level of Innovation
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Little-Box 2.0
240 W/in3

Power Density Limit Due to Cooling

■ Max. Possible Power Density Def. by Heatsink Volume



■ Cooling System Performance Index (CSPI)
● Highest Performance Fan
● Fin Thickness / Channel Width Optimization
● Maximum Thermal Conductance / Volume     

 

■ Eff.-Dependent Power Density Limit 


  






 










 
 





Multi-Objective
Optimization

Abstraction of Converter Design
Design Space / Performance Space
Pareto Front
Sensitivities / Trade-Offs



Required Performance Improvement

─ Power Density   [kW/dm3]
─ Power per Unit Weight  [kW/kg]
─ Relative Costs    [kW/$]
─ Relative Losses  [%]
─ Failure Rate    [h-1]

■ Performance  Indices

[kgFe    /kW] 
[kgCu    /kW]
[kgAl /kW]
[cm2

Si /kW]

►

►

Environmental Impact…
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Multi-Objective Design Challenge (1)
■ Counteracting Effects of Key Design Parameters
■ Mutual Coupling of Performance Indices  Trade-Offs

● Large Number of Degrees of Freedom / Multi-Dimensional Design Space 
● Full  Utilization of Design Space only Guaranteed by  Multi-Objective Optimization
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■ Counteracting Effects of Key Design Parameters
■ Mutual Coupling of Performance Indices  Trade-Offs

52/93

Multi-Objective Design Challenge (2)

● Large Number of Degrees of Freedom / Multi-Dimensional Design Space 
● Full  Utilization of Design Space only Guaranteed by  Multi-Objective Optimization



● Mapping of “Design Space” into System “Performance Space”

Performance Space

Design Space

Abstraction of Power Converter Design
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Mathematical Modeling
of the Converter Design

● Multi-Objective Optimization  – Guarantees Best Utilization of All Degrees of Freedom (!)
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Multi-Objective Optimization (1)

■ Ensures Optimal Mapping of the “Design Space” into the “Performance Space”
■ Identifies Absolute Performance Limits  Pareto Front / Surface

● Clarifies Sensitivity to Improvements of Technologies 
● Trade-off Analysis

 
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Determination of the η-ρ-Pareto Front (a)

─ Core Geometry / Material
─ Single / Multiple Airgaps
─ Solid / Litz Wire, Foils
─ Winding Topology
─ Natural / Forced Conv. Cooling
─ Hard-/Soft-Switching
─ Si / SiC
─ etc.
─ etc.
─ etc.

─ Circuit Topology
─ Modulation Scheme
─ Switching Frequ.
─ etc.
─ etc.

■ System-Level Degrees of Freedom

■ Comp.-Level Degrees of Freedom of the Design

● Only η -ρ -Pareto Front Allows Comprehensive
Comparison of Converter Concepts (!)
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■ Example:  Consider Only fP as  Design Parameter

fP =100kHz

“Pareto Front”■ Only the Consideration of 
All Possible Designs / Degrees
of Freedom Clarifies the 
Absolute η-ρ-Performance 
Limit

57/93

Determination of the η-ρ-Pareto Front (b)



■ Design Space Diversity
■ Equal Performance for Largely Different Sets of Design Parameters

● E.g. Mutual Compensation  of  Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
● Allows  Optimization for Further Performance Index (e.g. Costs)

58/93

Multi-Objective Optimization (2)



►

● Specifying  Only a Single Performance Index is of No Value (!)
● Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)  

59/93

Converter η-ρ-σ-Pareto Surface (1)
■ Pareto Front / Surface Used for Performance Evaluation
■ Definition of a Power Electronics “Technology Node”  (η*,ρ*,σ*,fP*)
■ Maximum σ [kW/$], Related Efficiency & Power Density 



►

■ Pareto Front / Surface Used for Performance Evaluation
■ Definition of a Power Electronics “Technology Node”  (η*,ρ*,σ*,fP*)
■ Maximum σ [kW/$], Related Efficiency & Power Density 

60/93

Converter η-ρ-σ-Pareto Surface (2)

● Specifying  Only a Single Performance Index is of No Value (!)
● Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)  



Comparison to “Moore´s Law”

● Definition of “η*,ρ*,σ*,fP*–Node” Must Consider Conv. Type / Operating Range etc. (!)

■ “Moore´s Law” Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!)
■ Number of Transistors (Density @ Minimum Costs) Doubles Every 2 Years

Gordon Moore: The 
Future of Integrated 
Electronics, 1965  
(Consideration of Three 
Consecutive Technology
Nodes)

Lower
Yield

Economy of
Scale

>2015: Smaller 
Transistors but Not 
any more Cheaper
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►



Technology
Development Characteristics

Hype Cycle
S-Curve / Disruption

Learning Curve

Source: www.clipart-library.com



Hype-Cycle of Technologies 

Source:  

Solid-State Transformers
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● New Technology  ? of “Killer” Application

■ Innovations are Driven by “Demand Pull” 
and “Technology Push” 

■ New Technologies are “Enablers” 
Technology Roadmaps

■ Initially Overexpected Importance of New 
Technologies Due to Exp. Increasing # of
Publications (Positive Feedback) etc.



S-Curve Pattern of Innovation
■ Technologies Show Predictable Cycle of Adoption / Growth / Maturity (S-Curve)
■ Breakthrough Inventions  More Ideal Way of Delivering an Existing Function

Source:  
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Dilemma Zone
(Disruption ?) 

● Evolution of Systems Driven by S-Curves of All Core Technologies



Power MOSFETs & IGBTs
Microelectronics

Circuit Topologies
Modulation Concepts

Control Concepts

Super-Junct. Techn. / WBG
Digital Power

Modeling &  Simulation

2025
2015

►

►
►

SCRs / Diodes 
Solid-State Devices

S-Curve of Power Electronics

“Passives”
Adv. Packaging

Automated Design of Converters & 
“Systems”
Interdisciplinarity

WBG

■

!

■ Power Electronics  1.0  4.0

1.0

2.0

3.0

4.0

►
►
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1958



Disruptive Innovations

— NY City, 5th Av., Easter Parade  Year 1900: One Motor Cycle / Year 1913: One Horse & Carriage (!)
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■ Example — Rapid Change of  Transportation Enabled by New Technology (ICE) & Business Model 
Tony Seba:  “All New Vehicles, Globally, will be Electric by 2030”

● Further Examples  - Digital / Analogue Photography, VHS Cassette Tape System / DVD  etc.
● The Stone Age Didn´t End for the Lack of Stone (Disrupted by Bronze Tools)

Source: Tony Seba 



Learning Curve of Technologies
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● Typ. Learning Rate of 15…25%  Dramatic  Cost Reduction over Longer Timespan 
● Used for Prediction of Future Costs of a Technology (e.g. PV “Grid Parity”)  Long Term Strategies

■ Analysis of the Performance Improvement  as Function of Accumulated Experience  
■ Learning Rate  Improvement / Cost Reduction for Each Doubling of Cumulative Installed Capacity 



Future Applications
Driven by MEGATRENDS



Industry Automation / Robotics 
■ All Kinds of Automated Assembling
■ Material Machining / Processing – Drilling, Milling, etc. 
■ Pumps / Fans / Compressors
■ etc., etc.                                    

Source:

● 60% of  El. Energy Used in Industry Consumed by VSDs 
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Server-Farms
up to 450 MW

99.9999%/<30s/a
$1.0 Mio./Shutdown

Since 2006 
Running Costs > 

Initial Costs

■ Ranging from Medium Voltage to Power-Supplies-on-Chip
■ Short Power Supply Innovation Cycles
■ Modularity / Scalability

─ Higher Availability 
─ Higher Efficiency
─ Higher Power Density  
─ Lower Costs



Source: REUTERS/Sigtryggur Ari

Deep Green/Zero              Datacenters
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■ Direct MV-Supply of Individual Racks Using Solid-State Transformer  5…7%  Red. in Losses 
■ Improves Reliability  &  Power Quality  / Smaller Footprint

Future Modular Power Distribution      

─ Conventional

■ MV  48V 1.2V - Only 2 Conversion Stages from MV to CPU-Level (!)

Load

─ Direct  3-Φ 6.6kV AC  48V DC Conversion / Unidirectional SST


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■ Metcalfe's Law

Digitalization Driver 



– Moving from Hub-Based Concept
to Community Concept Increases
Potential Network Value 
Exponentially (~n(n-1)  or
~n log(n) )

ValueSource:
Pixabay
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Average Increase 
0.4%/a

Climate Change

■ CO2 Concentration  &  Temperature Development
■ Evidence from Ice Cores

● Reduce CO2 Emissions Intensity (CO2/GDP) to Stabilize Atmospheric CO2 Concentration
● 1/3 in 2050 → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)
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Source: H. Nilsson
Chairman IEA DSM Program 
FourFact AB

■ CO2 Concentration  &  Temperature Development
■ Evidence from Ice Cores
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Climate Change

● Reduce CO2 Emissions Intensity (CO2/GDP) to Stabilize Atmospheric CO2 Concentration
● 1/3 in 2050 → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)



 Off-Shore Wind Farms

● Off-Shore Wind Farm

Source: M. Prahm / Flickr

■ Medium-Voltage (DC) Power Collection and Transmission   
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─ Current 690V Electrical System Significant Cabling Weight/Costs & Space Requirement  
─ Future  Local Medium-Frequency Conv. to Medium-Voltage AC or DC

► On-Shore Wind Power System

 Wind Turbine Electrical System

► Future Off-Shore System 

Low-
Voltage 
Cable

Medium-
Voltage 
Cable
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 Off-Shore Collector-Grid Concepts

■ DC/DC-Interface  of  Wind Turbine DC Link to MVDC Collector Grid   Lower Losses (1%) & Volume
■ DC/DC-Interface  of  MVDC Grid to HVDC Transmission                      Lower Losses (1%) & Volume

■ Conventional AC Collector-Grid

75/93



 Utility-Scale Solar Power Plants

● Globally 
Installed PV 
Capacity 
Forecasted to
2.7 Terawatt by
2030 (IEA)

■ Medium-Voltage (DC) Power Collection and Transmission   

Source: REUTERS/Stringer 
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Future DC Collector Grid

■ DC/DC Solid-State Transformer
for MPPT  & Direct Interfacing 
of PV Strings to MV Collector Grid

■ 1.5% Efficiency Gain  
Compared to Conv. 
AC Technology  



Conventional ►

AC Medium-Voltage

HV MainsHV Mains

High-Voltage
Transmission 

System

Medium-Voltage
Collector Grid 

Low-Voltage

Future ►
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Maximum Power 
Point Tracking 

DC/DC Converter



Sustainable Mobility

www.theicct.org

■ EU Mandatory 2020 CO2 Emission Targets for New Cars

─ 147g CO2/km for Light-Commercial Vehicles 
─ 95g CO2/km for Passenger Cars
─ 100% Compliance in 2021

● Hybrid Vehicles
● Electric Vehicles


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 Ultra-Fast /High-Power EV Charging
■ Medium Voltage Connected Modular Charging Systems 
■ Very Wide Output Voltage Range (200…800V)

Source: Porsche 
Mission-E Project

─ E.g., Porsche FlexBox incl. Cooling 
─ Local Battery Buffer (140kWh)
─ 320kW 400km Range in 20min
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 Bidirectional MV Interface
■ Conventional

■ Future Solid-State 
Transformer (SST)-
Based Concept

● On-Site Power / Energy Buffer  „Energy-Hub“
● Power / Energy Management    Peak Load Shaving &   Grid Support / Stabilization
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Sustainable Air Transportation
■ Massive Steady Increase of Global Air Traffic Over the Next Decades

─ Need for 70´000 New Airliners over the Next 20 Years (Boeing & Airbus)
─ Stringent Flightpath 2050 Goals of ACARE  Reduction of CO2/NOx/Noise Emissions  


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● Eff. Optim. Gas Turbine  
● 1000Wh/kg Batteries  
● Distrib. Fans (E-Thrust)
● Supercond. Motors 
● Med. Volt. Power Distrib.

Source:

 Futuristic Mobility Concepts (1)  

Future Hybrid 
Distributed Propulsion Aircraft

82/93

■ Distributed Propulsion Aircraft
■ Cut Emissions Until 2050
─ CO2 by 75%, 
─ NOx by 90%, 
─ Noise Level by 65%



Source:   

● Wing-Tip Mounted Eff. Optimized Gas Turbines    &   Distributed E-Fans (“E-Thrust”)
● MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

Turbo 
Generators

E-Fans / 
Continuous 
Nacelle

NASA N3-X 
Vehicle Concept
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 Futuristic Mobility Concepts (2)  

■ Distributed Propulsion Aircraft
■ Cut Emissions Until 2050
─ CO2 by 75%, 
─ NOx by 90%, 
─ Noise Level by 65%



● Generators  ─ 2 x 40.2MW (NASA)
● E-Fans  ─ 14 x 5.7 MW  (1.3m Diameter)

► MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

 Future Aircraft Electric Power System
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 Future Technology Requirements

■ Red. Inverter Volume / Weight        Matching of Low High-Speed Motor Volume   
■ Lower Cooling Requirement             Low Inverter Losses  &  HF Motor Losses
■ High Speed Machines  High Output Frequency Range  

 Main “Enablers”  — SiC/GaN Power Semiconductors  & Adv. Inverter Topologies 

Source:
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■ Hyperloop 
■ San Francisco  Los Angeles in 35min

● Low Pressure Tube
● Magnetic Levitation
● Linear Ind. Motor
● Air Compressor in Nose

www.spacex.com/hyperloop

 Futuristic Ground-Based Mobility
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Urbanization
■ 60% of World Population Exp. to Live in  Urban Cities  by 2025
■ 30 MEGA Cities Globally  by 2023

─ Smart Buildings 
─ Smart Mobility
─ Smart Energy / Grid 
─ Smart ICT, etc.

● Selected Current & Future MEGA Cities  2015  2030

Source: World Urbanization
Prospects: The 2014 Revision
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Source:

 Smart Cities / Grids / Buildings (1)

www.masdar.ae 

■ Masdar = “Source”
─ Fully Sustainable Energy Generation

* Zero CO2
* Zero Waste

─ EV Transport / IPT Charging
─ to be finished  2025
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Source:

www.masdar.ae 
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 Smart Cities / Grids / Buildings (2)
■ Masdar = “Source”
─ Fully Sustainable Energy Generation

* Zero CO2
* Zero Waste

─ EV Transport / IPT Charging
─ to be finished  2025



DC Microgrids

─ Conventional ─ Future SST-Based Concept

■ Local DC Microgrid  Integrating Loads/Ren. Sources/Storage
■ No Low-Voltage AC/DC Conversion Higher Efficiency & Lower Realization Effort

(!)
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● Urgent Need for Village-Scale Solar DC Microgrids etc. 
● 2 US$ for 2 LED Lights + Mobile-Phone Charging / Household  / Month (!)

Alleviate Poverty
■ 2 Billion “Bottom-of-the-Pyramid People” are Lacking Access to Clean Energy 
■ Rural Electrification in the Developing World 
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● Key Importance of Technology Partnerships of Academia & Industry

■ Commoditization / Standardization
■ Extreme Cost Pressure (!)

Future Development   

“There is Plenty of..
Room at the Bottom”

“There is Plenty of. 
Room at the Top”  Medium Voltage/Frequency 

Solid-State Transformers  

Power-Supplies on Chip 
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Source: whiskeybehavior.info Conclusion



Conclusion 

 Power Electronics is a Key
and Enabling Technology for all Kinds
of Electric Energy Utilization !

Source: www.insites-consulting.com
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Thank you!





1-Φ AC/DC Conversion 
DC-Side Energy Storage Requirement



● Input Voltage & Current / Power Flow / DC Output Voltage Fluctuation

A1/5

1-Φ AC/DC Conversion

■ Example of Boost-Type PFC Rectifier



Passive Power Pulsation Buffer

● C > 1.3mF / 100 cm3  
 1/3 of the Total Converter Volume (!)  

Example       S0 = 2.0 kVA
cos Φ0 = 0.7
UC,nom = 400 V
ΔUC/UC,nom=3 %

■ Electrolytic Capacitor
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■ Large Voltage Fluctuation Foil or Ceramic Capacitor
■ Buck-Type (Lower Voltage Levels) or Boost-Type DC/DC Interface Converter

● Significantly Lower Overall Volume Compared to Electrolytic Capacitor

108 x 1.2μF /400 V
Ck ≈ 140μF
VCk= 23.7cm3

CeraLinkTM
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Active Power Pulsation Buffer



Scaling of Electric Machines

Source: www.freevector.co



Scaling of Electric Machines (1) 
■ Generated Force Dependent on Magnetic Field and Current 
■ Current Def. by “Current Loading” (A/cm) or  Current Density (A/cm2) or  Cooling (W/cm2) 
■ Magnetic Field Strength Limited by Saturation

● Const. Current Density           
● Const. Loss / Surface

 Assumption:  A = const.      




  



   

 Torque

 Rotor Surface Area Related Force (N/cm2) 
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Scaling of Electric Machines (2) 

■ Dependency of Motor / Generator Size on Output Power
■ Overall Size Drops with Increasing Motor Speed

● Gearbox Required for Low Speed of Turbine / Load   Adds Volume and Losses  

 Power      Volume  













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


