

Multi-Objective Optimization of Power Electronics Converter Systems

Johann W. Kolar Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

Introduction
 Multi-Objective Optimization Approach
 Optimization Application Examples
 Summary

D. Bortis R. Bosshard R. Burkart Acknowledgement F. Krismer

1/27

ETH zürich

Introduction

Power Electronics Performance Trends Power Converter Design Challenge

Power Electronics Converters Performance Trends

Performance Improvements (1)

ETH zürich

Power Density

Power Electronics Workshop 2016

Performance Improvements (2)

Efficiency

ETH zürich

 PV Inverters: Typ. Loss Red. of Typ. Factor 2 over 5...10 Years

Multi-Objective Design Challenge (1)

- Performances are Approaching Physical Limits (e.g. Efficiency)
- Counteracting Effects of Key Design Parameters
- Mutual Coupling of Performance Indices Trade-Offs

- → Large Number of Degrees of Freedom / Multi-Dimensional Design Space
- \rightarrow Full Utilization of Design Space only Guaranteed by Multi-Objective Optimization

Power Electronics Workshop 2016

Multi-Objective Design Challenge (2)

- Performances are Approaching Physical Limits (e.g. Efficiency) Counteracting Effects of Key Design Parameters Mutual Coupling of Performance Indices Trade-Offs

 \rightarrow Large Number of Degrees of Freedom / Multi-Dimensional Design Space \rightarrow Full Utilization of Design Space only Guaranteed by Multi-Objective Optimization

Multi-Objective Design Challenge (3)

7/27

Power Electronics Workshop 2016

Visualization of Multiple Performances

Spider Charts, etc.

→ H. Chernoff / Stanford: "The Use of Faces to Represent Points in K-Dimensional Space Graphically"

Multi-Objective Optimization

Abstraction of Converter Design Design Space / Performance Space Pareto Front Sensitivities / Trade-Offs

ETH zürich

Abstraction of Power Converter Design

→ *Mapping* of "*Design Space*" into System "*Performance Space*"

→ Multi-Objective Optimization - Best Utilization of All Degrees of Freedom

Multi-Objective Optimization (1)

- Ensures Optimal Mapping of the "Design Space" into the "Performance Space" Identifies Absolute Performance Limits \rightarrow Pareto Front / Surface

 \rightarrow Clarifies Sensitivity $\Delta \vec{p} / \Delta \vec{k}$ to Improvements of Technologies \rightarrow Trade-off Analysis

Multi-Objective Optimization (2)

- Design Space Diversity
- **Equal Performance for Largely Different Sets of Design Parameters**

Design Space

Performance Space

→ E.g. Mutual Compensation of Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
 → Allows Optimization for Further Performance Index (e.g. Costs)

Converter Performance Evaluation Based on $\eta - \rho - \sigma$ -Pareto Surface

- Definition of a Power Electronics "*Technology Node*" \rightarrow ($\eta^*, \rho^*, \sigma^*, f_{\rho^*}$) Maximum σ [kW/\$], Related Efficiency & Power Density

- \rightarrow Specifying Only a Single Performance Index is of No Value (!)
- → Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)

Multi-Objective Optimization Application Examples

Comparative Converter Evaluation Impact of Technology Progress Design Space Diversity

Comparative Converter Evaluation

Wide Input Voltage Range Isolated DC/DC Converter

Structure of "Smart Home" DC Microgrid

- Universal Isolated DC/DC Converter
- Bidirectional Power Flow
- Galvanic Isolation

ETH zürich

- Wide Voltage Range
- High Partial Load Efficiency

- Advantages
- Reduced System Complexity
- Lower Overall Development Costs
- Economies of Scale

Comparative Evaluation of Converter Topologies

Conv. 3-Level Dual Active Bridge (3L-DAB)

Advanced 5-Level Dual Active Bridge (5L-DAB)

ETH zürich

Optimization Results - Pareto Surfaces

Impact of Technology Progress & Design Space Diversity

- Design / Build the 2kW 1- Φ Solar Inverter with the Highest Power Density in the World Power Density > 3kW/dm³ (50W/in³) Efficiency > 95% Case Temp. < 60°C

- EMI FCC Part 15 B

 \rightarrow Push the Forefront of New Technologies in R&D of High Power Density Inverters

Power Electronics Workshop 2016

Selected Converter Topology

- Interleaving of 2 Bridge Legs per Phase
- Active DC-Side Buck-Type Power Pulsation Buffer
- 2-Stage EMI AC Output Filter

- → ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)
 → Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure

Power Electronics Workshop 2016

Little-Box 1.0 Prototype

- Performance
- 8.2 kW/dm³

ETH zürich

- 96,3% Efficiency @ 2kW
 T_c=58°C @ 2kW
- **Design Details**

- 600V IFX Normally-Off GaN GIT
 Antiparallel SiC Schottky Diodes
 Multi-Airgap Ind. w. Multi-Layer Foil Wdg
 Triangular Curr. Mode ZVS Operation
 CeraLink Power Pulsation Buffer

Analysis of Potential Performance Improvement for Ideal Switches \rightarrow

Little Box 1.0 @ Ideal Switches (TCM)

- Multi-Objective Optimization of Little-Box 1.0 (X6S Power Pulsation Buffer)
- Step-by-Step Idealization of the Power Transistors
- Ideal Switches: $k_c = 0$ (Zero Cond. Losses); $k_s = 0$ (Zero Sw. Losses)

→ Analysis of Improvement of Efficiency @ Given Power Density & Maximum Power Density → The Ideal Switch is NOT Enough (!)

- *L* & *f_s* are Independent Degrees of Freedom Large Design Space Diversity (Mutual Compensation of HF and LF Loss Contributions)

Power Electronics Workshop 2016

ETH zürich

Summary

Future Developments/Design Process Future Research Topics Power Electronics 2.0 Appendix

Future Developments

- Megatrends Renewable Energy / Energy Saving / E-Mobility / "SMART" XXX Power Electronics will Massively Spread in Applications

- → More Application Specific Solutions
- → Mature Technology Cost Optimization @ Given Performance Level
 → Design / Optimize / Verify (in Simulation) Cheaper / Faster / Better

ETH zürich

Future Design Process

Main Challenges: Modeling (EMI, etc.) & Implementation in Industry

- → Reduces Time-to-Market Cheaper / Faster / Better
 → Allows to Understand Mutual Dependencies of Performances / Sensitivities (!)
 → Simulate What Cannot Any More be Measured (High Integration Level)

Power Electronics Technology S-Curve

Summary

Advantages

Research Topics

Challenges

Limitations

- Design / Optimize / Verify All in Simulation
- Provide a Fully Virtual Design for Fully Automated Manufacturing
- Reduce Design Period from Weeks to Hours (Factor >100)
- Directly Build Systems from Optimiz. Results (3D Printing etc.)
- Pre-Analyze Improvement by New Technologies ("Research Efficiency")
- Optimize over Extreme Span (Semicond. Doping to Conv. Mission Profile)
- Free Adjustment of Optimization Criteria (Design on Demand)
- Reduced Order Models / Model Accuracy
- Opt. Combination of Analytical & FEM Models
- Partitioning of Optimiz. (Local/Global Variables & Optimiz. etc.)
- Selection of Abstraction Level / Timescale /
- Translation of Geometries into Model Parameters (e.g. EMI)
- Consideration of Geometric Limitations (Design for Manufact.)
- New Models for Highly Integr. Converters (Strong EM & Therm. Coupl.)
- Convergence of Simulations & Measurements (Autom. Param. Adj.)
- Visualization of Optim. Results / Interfaces (Programming & Results)
- Introduction in Industry (and Academia ;-))
- Company-Wide Updates / Maintenance
- Integration in "Virtual Prototyping" Environment
- Simulation Extends the Knowledge Space ... But, ... Cannot Create Fundamentally New Concepts (!)

Power Electronics 2.0

- Design Considering Converters as "Integrated Circuits" (PEBBs)
- Extend Analysis to Converter Clusters / Power Supply Chains / etc.

 \rightarrow "Systems" (Microgrid) or "Hybrid Systems" (Automation / Aircraft) \rightarrow "Integral over Time" \rightarrow "Energy"

$$p(t) \rightarrow \int_{0}^{t} p(t) dt$$

- Power Conversion → Energy Management / Distribution
- Converter Analysis
- Converter Stability
- Cap. Filtering
- Costs / Efficiency
- etc.

- → System Analysis (incl. Interactions Conv. / Conv. or Load or Mains)
 → System Stability (Autonom. Cntrl of Distributed Converters)
 → Energy Storage & Demand Side Management
 → Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency

ETH zürich

New Power Electronics Systems Performance Figures/Trends

Power Electronics Workshop 2016

Thank You !

Appendix #1

Determination of the η - ρ -**Pareto Front**

ETH zürich

Determination of the η - ρ -Pareto Front (1)

- **Comp.-Level Degrees of Freedom of the Design**

- Core Geometry / Material
 Single / Multiple Airgaps
 Solid / Litz Wire, Foils
 Winding Topology
 Natural / Forced Conv. Cooling
- Hard-/Soft-Switching
- Si / SíC
- etc.
- etc. - etc.
- System-Level Degrees of Freedom
- Circuit Topology
 Modulation Scheme
- etc.
- etc.

ETH zürich

- etc.
- Only η-ρ-Pareto Front Allows Comprehensive **Comparison of Converter Concepts** (!)

Determination of the η - ρ -Pareto Front (1)

Specific Design \rightarrow **Only** f_P as Variable Design Parameter

Appendix #2

Performance & Life-Cycle-Costs of SiC vs. Si

• Multi-Objective η - ρ - σ -Comparison of Si vs. SiC

- Three-Phase PV Inverter System
 - Single-Input/Single-MPP-Tracker Multi-String PV Converter
 - DC/DC Boost Converter for Wide MPP Voltage Range
 - Output EMI Filter
 - Typical Residential Application

- \rightarrow Exploit Excellent Hard- AND Soft-Switching Capabilities of SiC
- \rightarrow Find Useful Switching Frequency and Current Ripple Ranges
- \rightarrow Find Appropriate Core Material

Topologies - Converter Stages

A-2.2 -

Optimization Results - Pareto Surfaces

No METGLAS Amorphous ____ **Iron Designs**

ETH zürich

- Pareto-Optimal Designs for Entire Considered f_{sw} Range
- **No METGLAS Amorphous Iron Designs**

- Pareto-Optimal Designs for Entire Considered f_{sw} Range
- **METGLAS Amorphous Iron** and Ferrite Designs

Optimization Results – Investigations Along Pareto Surfaces

Extension to *Life-Cycle Cost* (*LCC*) *Analysis*

Performance Space Analysis

- 3 Performance Measures: η , ρ , σ - Reveals Absolute Performance Limits /

Trade-Offs Between Performances

- **LCC** Analysis
- Post-Processing of Pareto-Optimal Designs
- Determination of Min.-LCC Design
- Arbitrary Cost Function Possible

- \rightarrow Which is the Best Solution Weighting η , ρ , σ , e.g. in Form of Life-Cycle Costs (LCC)?
- \rightarrow How Much Better is the Best Design?
- → Optimal Switching Frequency?

Power Electronics Workshop 2016

Post-Processing

■ LCC – Analysis

- Best System 2L-PWM SiC Converter @ 44kHz & 50% Ripple
 - 22% Lower LCC than 3L-PWM
 - 5% Lower LCC than 2L-TCM

 - Simplest Design
 Probably Highest Reliability
 - Lower Vol. (Housing) Not Yet Considered!
- Application of SiC Justified on "System Level" \rightarrow

A-2.6

