

Power Electronics – A Key Technology for the All-Electric/All-Digital World

Johann W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Nov. 15, 2019

Power Electronic Systems Laboratory

2 Sen. Researchers

ETH zürich

in Europe

Competence Centre

Outline

- **Basics**
- Megatrends
 X-Technologies
 Research @ ETHZ
- **Future**

D. Bortis Acknowledgement F. Krismer

EPFL

Basic Concept

Pulse-Width Modulation Time/Frequency Domain & Filtering

•	ON	
	F	
•	OFF	

Source: www.gograph.com

EPF

Pulse Width Modulated Converters

- Switch-Mode Voltage Formation Subsequent Filtering
 Higher Sw. Frequency → Smaller Filter Components (Limited by Sw. Losses, Signal Processing etc.)

EPF

Converter Topologies

Multi-Cell Approach

ETH zürich

Remark — Magnetics

 u_1

- → There is No "Moore's Law" in Power Electronics !
- E.g. Scaling Law of Transformers
 Size Related to Transferrable Power
 - $\begin{array}{c} \hat{\pmb{B}}_{max} \ \dots \ \text{Limited (Material)} \\ \pmb{J}_{rms} \ \dots \ \text{Limited (Material)} \\ f \ \dots \ \text{Limited (HF Losses)} \end{array}$

- Slow Progress in Material Science
- New Materials > 10 Years

Remark — DC vs. 3- Φ AC Power Systems

DC Voltage Ensures Max. Utiliz. of Isol. Voltage

 \rightarrow Highest Voltage RMS Value / Lowest Current (!) **Reduction of Conductor Cross Section** Quadratic Dependency of Losses on Voltage Level \rightarrow

4/54

EPF

- DC Voltage Level Transformation Requires Power Electronics Interfaces
- DC Fault Current Clearing is Challenging (Missing Regular Current Zero Crossing)

Global Megatrends

EPFL

Renewable Energy _____ Digitalization Sustainable Mobility Robotics Etc.

Wind Energy

- **Power** prop. $D^2 \rightarrow$ "Bigger is Better" / Lower Relative Costs 50kW (D = 15m) in 1980 \rightarrow Up to 20MW (D = 250m) in Future

EPFI

\rightarrow Wind Turbine Electrical System

- 690V Electrical System → Cabling Weight/Costs & Space Requirement Future Local Medium-Frequency Conv. to Medium-Voltage AC or DC

 \rightarrow Off-Shore DC Collector-Grid

Conventional AC Collector-Grid

- DC/DC-SST WT DC-Link to MVDC Collector Grid → Lower Losses (1%) & Volume
 DC/DC-SST MVDC Grid to HVDC Transmission → Lower Losses (1%) & Volume

8/54

Utility-Scale Solar Power Plants

Medium-Voltage Power Collection and Transmission

Source: REUTERS/Stringer

 Globally Installed PV Capacity Forecasted to 2.7 Terawatt by 2030 (IEA)

- DC/DC SST for MPPT & Direct Interfacing to MV Collector Grid
- 1.5% Efficiency Gain Compared to Conv. AC Technology

9/54

EPF

Conventional **>**

ETH zürich

Global Megatrends

Renewable Energy Digitalization Sustainable Mobility Robotics Etc.

- Ranging from Medium Voltage to Power-Supplies-on-Chip
 Short Power Supply Innovation Cycles
 Modularity / Scalability

- Higher Availability
 Higher Efficiency
 Higher Power Density
- Lower Costs

Source: REUTERS/Sigtryggur Ari

Server-Farms up to 450 MW 99.9999%/<30s/a \$1.0 Mio./Shutdown

> Since 2006 Running Costs > Initial Costs

33 Watts

60 Watts

→ Future *Modular* SST-Based Power Distribution

- **5...7% Reduction in Losses & Smaller Footprint**
- Improves Reliability & Power Quality
- Conventional

- Future Direct 3- Φ 6.6kV AC \rightarrow 48V DC

• $MV \rightarrow 48V \rightarrow 1.2V$ - Only 2 Conversion Stages from MV to CPU-Level (!)

Global Megatrends

Renewable Energy Digitalization Sustainable Mobility _____ Robotics Etc.

Sustainable Mobility

- EU 2020 CO₂ Emission Targets for New Cars
- 147g CO₂/km for Light-Commercial Vehicles
 95g CO₂/km for Passenger Cars
 100% Compliance in 2021

ETH zürich

\rightarrow Ultra-Fast EV-Charging

- Medium Voltage Connected Modular Charging Systems
- Very Wide Output Voltage Range (200...800V)

Source: Porsche Mission-E Project

- E.g., Porsche *FlexBox* incl. Cooling
- Local Battery Buffer (140kWh)
- − 320kW \rightarrow 400km Range in 20min

\rightarrow Bidirectional MV-Interface

Conventional

Future

- On-Site Power / Energy Buffer → "Energy-Hub"
 Power / Energy Management → Peak Load Shaving & Grid Support / Stabilization

\rightarrow Futuristic Mobility

- Hyperloop
 San Francisco → Los Angeles in 35min

POD COMPETITION www.spacex.com/hyperloop

- Low Pressure Tube
- Magnetic Levitation Linear Ind. Motor
- **Air Compressor in Nose**

Air Transportation

Traffic is expected to double in the next 15 years

- Massive Steady Increase of Global Air Traffic Over the Next Decades
- Need for 70[°]000 New Airliners over the Next 20 Years (Boeing & Airbus) Stringent *Flightpath 2050 Goals* of ACARE \rightarrow Reduction of CO₂/NO_x/Noise Emissions

GLOBAL AIR TRAFFIC (TRILLION REVENUE PASSENGER KILOMETRES)

Source: International Civil Aviation Organization (ICAO)/Airbus 2015

EPF

17/54

Source:

\rightarrow Future Aircraft

- Cut Emissions Until 2050
- CO₂ by 75%,
- N0⁵_x by 90%,
 Noise Level by 65%

- Wing-Tip Mounted Eff. Optimized Gas Turbines & Distributed E-Fans ("E-Thrust")
 MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

\rightarrow Future Aircraft Electric Power System

MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

- Generators 2 x 40.2MW (NASA) E-Fans 14 x 5.7 MW (1.3m Diameter)

EPF

Global Megatrends

Renewable Energy Digitalization Sustainable Mobility Robotics Etc.

Industry Automation

- Robotics
- Machining / Processing Drilling, Milling, etc.
 Pumps / Fans / Compressors
 Transportation

- etc., etc.

.... Everywhere !

• 60% of El. Energy Used in Industry Consumed by Variable Speed Drives (VSDs)

\rightarrow Future Integrated Servo Drive Systems

State-of-the-Art

Source: YASKAWA

Network

DC Power

Future — Distributed DC-Link System

- SMART Motor Integr. of Inverter & Motor → High Operating Temp.
 Smaller Size & Massive Saving in Cabling Effort / Non-Expert Installation

ETH zürich

EPF

Required Improvements

■ Future → Cost / Cost / Cost & Robustness & Availability & Recyclability

S-Curve of Power Electronics

- **Power Electronics 1.0** \rightarrow **Power Electronics 4.0**
- Identify "X-Concepts" / "Moon-Shot" Technologies 10 x Improvement NOT Only 10% !

History and Development of the **Electronic Power Converter**

E. L. PHILLIPI NONMEMBER AIEE

E. F. W. ALEXANDERSON FELLOW AIEE

THE TERM "electronic power converter" needs some definition. The object may be to convert power from direct current to alternating current for d-c power transmission, or to convert power from one frequency into another, or to serve as a commutator for operating an a-c motor at variable speed, or for transforming high-voltage direct current into low-voltage direct current. Other objectives may be mentioned. It is thus evidently not the objective but the means which characterizes the electronic power converter. Other names have been used tentatively but have not been accepted. The emphasis is on electronic means and the term is limited to conversion of power as distinguished from electric energy for purposes of communication. Thus the name is a definition.

Paper 44-143, recommended by the AIEE committee on electronics for presentation at the AIEE summer technical meeting, St. Louis, Mo., June 26-30, 1944. Manuscript submitted April 25, 1944; made available for printing May 18, 1944.

E. F. W. ALEXANDERSON and E. L. PHILLIPI are with the General Electric Company, Schenectady, N. Y.

ETH zürich

Alexanderson, Phillipi-Electronic Converter

ELECTRICAL ENGINEERING

4143-

D-C LINK OR TRANSMISSION LINE

Operation Frequency Limit (1)

Serious Limitation of Operating Frequency by HF-Losses

Source: Prof. Albach, 2011

- Core Losses (incr. @ High Frequ. & High Operating Temp.) Temp. Dependent Lifetime of the Core Skin-Effect Losses

ETH zürich

Proximity Effect Losses

Adm. Flux Density for given Loss Density

■ Skin-Factor *F*, for Litz Wires with *N* Strands

 $r_{\rm s} = r / \sqrt{N}$

EPF

Operation Frequency Limit (2)

- Higher Frequency Results in Smaller Size only Up to Certain Limit (for MnZn Core-Based Designs)
- **Optimal Converter Operating Frequencies < 1MHz**
- Difficult to Manufacture

lolid wire 10-strand 10-strand 25-strand 25-strand 66-strand 66-strand 160-strand 160-siran 405-stran (cm³) 05-stran Volume 100 100 Frequency (kHz) 100 1000 1000 10 10000 Frequency (kHz) AWG #3 AWG #38 AWG #40 AWG #40 AWG #42 AWG #42 AWG #44 AWG #4F (cm^3) AWG #41 8 Volume 100 100 1000 1000 1000 Frequency (kHz) Frequency (kHz) (b) Given Size of Strands, Temperature Rise = 30C, 3F3 E (b) Given Size of Strands, Temperature Rise = 30C, 3F3 EE

• Automated Manufacturing \rightarrow Magnetic Integration / PCB-Windings / Planar Shapes

25/54

EPFI

Parallel Interleaving

Loss-Neutral Multiplication of Switching Frequency Reduced Ripple @ Same (!) Switching Losses

• Scalability / Manufacturability / Standardization / Impedance Matching / Redundancy

26/54

EPF

Series Interleaving

- Loss-Neutral Multiplication of Sw. Frequency N²-Reduced Ripple @ Same (!) Switching Losses Lower On-Resistance @ Given Blocking Voltage \rightarrow 1+1=2 NOT 2² = 4 (!)
- Extends LV Technology to HV

Scalability / Manufacturability / Standardization / Impedance Matching / Redundancy

Series Interleaving – Example @ ETH Zurich

■ Realization of a 99%++ Efficient 10kW 3-Φ 400V_{rms,ll} Inverter System
 ■ 7-Level Hybrid Active NPC Topology / LV Si-Technology

ETH zürich

20

EPFI

40kV SiC Super-Switch @ ETH Zurich

Quasi-X-Level (Staggered) Switching

300kVA Intelligent Power Module — Two-Level Bridge-Leg Appearance

• Integrated Gate Drive / Voltage Balancing / Protection / etc.

29/54

EPFL

650V GaN E-HEMT Technology f_{S,eff}= 4.8MHz f_{out} = 100kHz

EPFL

Integrated Filter GaN Power Module

- Selection of M=3 / N=3 Considering Efficiency / Filter Volume Trade-Off
- $N \cdot L_{filt}$ =3.3uH of Branch Inductance / C_{filt} = 90nF 650V GaN E-HEMT Technology / f_s = 800kHz
- $f_{S,eff}$ = 4.8MHz

• Design for Max. Output Frequency of $f_{out} = 100 \text{kHz}$ (!) @ Full-Scale Voltage Swing

Demonstrator System

- **Specifications**
- 10kW @ 800V_{DC}
 650V GaN Power Semiconductors
- Volume of ≈ 180 cm³ (incl. Control etc.) H₂O Cooling Through Baseplate

• Operation @ f_{out}=100kHz (f_{S,eff}= 4.8MHz)

EPFI

Motor-Integrated Modular Inverter

Motor-Integrated Modular Inverter

- Fault-Tolerant VSD
- Low-Voltage Inverter Modules
- Very-High Power Density / Efficiency
- Low C DC-Buffer Capacitors
- Rated Power
 Abstract Documentation Abstract Action Abstract Action

→ Challenges — Therm. Coupling/Decoupling of Motor & Inverter, dv/dt Limitation, etc.

EPF

Scaled Hardware Demonstrator

- Rated Power9kW @ 3700rpmDC-Link Voltage650V...720V Rated Power
- $3-\Phi$ Power Cells 5+1
- Outer Diameter 220mm

- Axial Stator Mount
- 200V GaN e-FETs
- *Low-Capacitance DC-Links*
- 45mm x 58mm / Cell

 \rightarrow Challenges — Therm. Coupling/Decoupling of Motor & Inverter, dv/dt Limitation, etc.

Power Electronic Systems 755 Laboratory

Low R_{DS(on)} High-Voltage Devices (1)

- High Critical E-Field of SiC \rightarrow Thinner Drift Layer High Maximum Junction Temperature $T_{j,max}$

Massive Reduction of Relative On-Resistance \rightarrow High Blocking Voltage Unipolar Devices

Power Electronic Systems Laboratory

Low R_{DS(on)} High-Voltage Devices (2)

- Low Circuit Complexity
- High Power Conversion Efficiency
- SiC / GaN (Monolithic AC-Switch) / Diamond

• High Heat Conductivity & Excellent Switching Performance

ETH zürich

EPFL

Low Switching Losses

- Si-IGBT → Up to 6.5kV / Rel. Low Switching Speed
 SiC-MOSFETs → Up to 15kV (1st Samples) / Factor 10...100 Higher Sw. Speed

Extremely High di/dt & dv/dt \rightarrow Challenges in Packaging / EMI •

Isolated 3-Port DC/DC Converter

- 3.6kW / Single Multi-Winding Transformer Linking of 400V PFC Rectifier / 450V / 12V Aux. Fully Autom. Manufacturing \rightarrow PCB-Based Design

• Design for Thermal Limit $(\eta \approx 95\%) \rightarrow Min$. Volume / Material Effort / Costs

3D-Packaging

- System in Package (SiP) Approach Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management Very High Power Density (No Bond Wires / Solder / Thermal Paste)
- Automated Manufacturing

- Future Application Up to 100kW (!)
- New Design Tools & Measurement Systems (!)

Monolithic 3D-Integration

Source: Panasonic ISSCC 2014

EPF

- GaN 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology
- 9 Dual-Gate GaN AC-Switches
- **DBM Gate Drive Transmitter Chip & Isolating Couplers**
- Ultra Compact $\rightarrow 25 \times 18 \text{ mm}^2$ (600V, 10A 5kW Motor) _

Digital Technology Push

- Exponentially Improving uC / Storage Technology (!)
- Extreme Levels of Density / Processing Speed Software Defined Functions / Flexibility Cont. Relative Cost Reduction

- Fully Digital Control of Complex Systems
- Massive Computational Power \rightarrow Fully Automated Design & Manufacturing / Industrial IoT (IIoT)

Multi-Objective Design Challenge (1)

- Counteracting Effects of Key Design Parameters
- Mutual Coupling of Performance Indices → Trade-Offs

41/54

EPF

- Large Number of Degrees of Freedom / Multi-Dimensional Design Space
- Full Utilization of Design Space only Guaranteed by Multi-Objective Optimization

Multi-Objective Design Challenge (2)

- Counteracting Effects of Key Design Parameters
- Mutual Coupling of Performance Indices → Trade-Offs

- Large Number of Degrees of Freedom / Multi-Dimensional Design Space
- Full Utilization of Design Space only Guaranteed by Multi-Objective Optimization

EPF

Virtual Prototyping

• Mathematical Description of the Mapping "Technologies" \rightarrow "System Performance"

Mathematical Modeling

• Multi-Objective Optimization - Guarantees Best Utilization of All Degrees of Freedom (!)

EPFL

44/54 -

Power Electronic Systems Laboratory

Multi-Objective Optimization

- Based on Mathematical Model of the Technology Mapping Multi-Objective Optimization \rightarrow Best Utilization of the "Design Space" Identifies Absolute Performance Limits \rightarrow Pareto Front / Surface

- Clarifies Sensitivity $\Delta \vec{p} / \Delta \vec{k}$ to Improvements of Technologies
- Trade-Off Analysis

Design Space Diversity

- Design Space Diversity
- **Equal Performance for Largely Different Sets of Design Parameters**

Design Space

Performance Space

- E.g. Mutual Compensation of Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
- Allows Optimization for Further Performance Index (e.g. Costs)

Airborne Wind Turbine (AWT) - Google X

- Power Kite → On-Board Turbine / Generator / Power Electronics Power Transmitted to Ground Electrically Minimum of Mechanical Support

48/54

EPF

AWT Electrical System Structure

Rated Power
 Operating Height
 Ambient Temp.
 Power Flow
 Motor

100kW 800...1000m 40°C Motor & Generator Airborne Wind Turbine

→ El. System Target Weight 100kg
 → Efficiency (incl. Tether) 90%
 → Turbine / Motor 2000/3000rpm

Turbines, Generators, and Power Electronics

ETH zürich

Overall AWT System Performance

EFFICIENCIES AND P	OWER-TO-WEIGHT	RATIOS AT THI	e 2 design	POINTS
	(CALCULATE	D FOR NOMINA	AL OPERATI	on).

Total system	Generator, VSR, and DAB converter			
$\begin{array}{l} \gamma = 1.37 \mathrm{kW/kg} \\ \eta = 90.0\% \end{array}$	Generator:	$\gamma_{\rm G}=3.11\rm kW/kg,$	$\eta_{\rm G} = 95.4\%$	
	VSR:	$\gamma_{\rm VSR} = 18.3\rm kW/kg,$	$\eta_{\rm VSR}=98.6\%$	
	DAB:	$\gamma_{\rm DAB} = 4.60\rm kW/kg,$	$\eta_{\rm DAB}=97.1\%$	
$\begin{array}{l} \gamma = 1.00 \mathrm{kW/kg} \\ \eta = 91.7\% \end{array}$	Generator:	$\gamma_{\rm G} = 2.14\rm kW/kg,$	$\eta_{\rm G} = 96.9\%$	
	VSR:	$\gamma_{\rm VSR} = 18.3\rm kW/kg,$	$\eta_{\rm VSR}=98.6\%$	
	DAB:	$\gamma_{\rm DAB}=3.53\rm kW/kg,$	$\eta_{\rm DAB}=97.4\%$	

EPF

Automated Design Roadmap

- **End-to-End Horizon** of Modeling & Simulation
- Design for Cost / Volume / Efficiency Target / Manufacturing / Testing / Reliability / Recycling

• AI-Based Summaries → No Other Way to Survive in a World of Exp. Increasing # of Publications (!)

IIoT in Power Electronics

Digital Twin \rightarrow Physics-Based Digital Mirror Image

Digital Thread \rightarrow "Weaving" Real/Physical & Virtual World Together

Source: www.railwayage.com

- External → Integrated Measurement Circuits & Merging of Oscilloscopes & Simulations
 Model of System's Past/Current/Future State → Design Corrections / Prev. Maintenance etc.

Source: whiskeybehavior.info

S-Curve of Power Electronics

- **Power Electronics 1.0** \rightarrow **Power Electronics 4.0**
- "X-Concepts" / "Moon-Shot" Technologies
- 10x Improvement NOT Only 10% !

• Integration into "Multi-Carrier" Energy Networks

Research Potential

■ Huge *Multi-Disciplinary* Challenges / Opportunities (!) are Still Ahead

54/54

Questions

CAGR Evolution

- Strong Growth of Power Electronics Industry
- Technological Development Driven by EV/HEVs
- US\$ 53.4 Billion (2018) → US\$ 72.6 (2024)

A/1

EPF

- EV/HEVs -- Huge Market Potential (Inverter, Boost Conv., 12V/48V Conv., Charger, etc.)
- 20.7% CAGR Between 2018 and 2024 & Strong Synergies with Other Applications

Current / New Application Areas

- **Extremely Wide Power / Voltage / Frequency Range**
- Extensions for SMART xxx / Ultra-Compact Converters / Mission Profile Analysis / etc.

Future Extensions of Power Electronics Application Areas

A/2

Digitalization Driver

- Metcalfe's Law
- Moving from Hub-Based Concept to Community Concept Increases Potential Network Value Exponentially ~n(n-1) or ~n log(n)

A/3

EPFL

Idea: F.C. Lee

Circuit Parasitics

- Extremely High di/dt
- **Commutation Loop Inductance L**_s Allowed L_s Directly Related to Switching Time $t_s \rightarrow$

B/1

EPF

Advanced Packaging & Parallel Interleaving for Partitioning of Large Currents

EMI Emissions

- Higher dv/dt \rightarrow Factor 10
- Higher Switching Frequencies → Factor EMI Envelope Shifted to Higher Frequencies \rightarrow Factor 10

• Higher Influence of Filter Component Parasitics and Couplings \rightarrow Advanced Design

B/2

Idea: M. Schutten

Virtual Prototyping ———

Power Electronic Systems Laboratory

$\eta - \rho - \sigma$ -Pareto Surface (1)

- Definition of a Power Electronics "Technology Node" \rightarrow ($\eta^*, \rho^*, \sigma^*, f_{\rho}^*$ -Node) Maximum σ [kW/\$], Related Efficiency & Power Density

→ Specifying Only a Single Performance Index is of No Value (!)
→ Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)

C/1

Power Electronic Systems Laboratory

η - ρ - σ -Pareto Surface (2)

- Definition of a Power Electronics "Technology Node" \rightarrow ($\eta^*, \rho^*, \sigma^*, f_{\rho}^*$ -Node) Maximum σ [kW/\$], Related Efficiency & Power Density

Specifying Only a Single Performance Index is of No Value (!) \rightarrow \rightarrow Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)

C/2

Remark

Comparison to "Moore's Law"

C/3

EPF

"Moore's Law" Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!)
Number of Transistors (Density @ Minimum Costs) Doubles Every 2 Years

• Definition of " $\eta^*, \rho^*, \sigma^*, f_{\rho^*}$ -Node" Must Consider Conv. Type / Operating Range etc. (!)

ETH zürich

Multi-Objective Optimization of 5kW Systems

Design Process Taking All Performance Aspects into Account

D/1

η - α - β - Pareto Coil Optimization **Encountered Design Trade-Offs** * Coil Size vs. Efficiency Śtray Field * Coil Size vs. * Frequency vs. Stray Field *f* = 100 kHz Ìh Small Coil Inductor Quality Factor Q 50 kHz 80 100 120 140 160 180 200 220 120 100 kHz 150 kHz 110 100 200 kHz 250 kHz 99.5 100 300 kHz η - α -Pareto Front 350 kHz Power Loss (W) 99 90 Efficiency η (%) 98.5 80 98 70 97.5 60 97 Thermal Limit 50 0.2 W/cm^2 96.5 $D_{a} =$ 40 $f = 100 \, \text{kHz}$ 96 80 100 20 40 60 0 1.5 3.5 4 ĥ 0.5 1 2 2.5 3 4.5 Large Coil ⊙___≫ Stray Field (µT) Power Density α (kW/dm²) $f = 200 \, \text{kHz}$ Small Coil

ightarrow Pareto-Optimization Allows to Study Influence of Key Design Parameters

Ìh

D/2

Optimized 50kW Demonstrator

■ All-SiC Power Electronics

- Rated Power
- Battery Voltage Power Density
- 600...800V 9.5kW/dm³ 50kHz/85kHz

50kW

- Sw. Frequency

- Inductive Power Transfer Coils
 - Air Gap Power Density
 - Frequency
- 150...220mm 1.6kW/dm² 85kHz

ETH Zurich / D-ITET

ETH Zurich

21	Nobel Prizes
530	Professors
6100	T&R Staff
2	Campuses
136	Labs
35%	Int. Students
90	Nationalities
36	Languages

150th Anniv. in 2005

Departments

ARCH Architecture BAUG **Civil, Environmental and Geomatics Eng.** BIOL **Biology** BSSE **Biosystems** CHAB **Chemistry and Applied Biosciences Earth Sciences** ERDW GESS Humanities, Social and Political Sciences HEST Health Sciences, Technology **Computer Science** INFK ITET Information Technology and Electrical Eng. MATH **Mathematics** MATL **Materials Science** MAVT **Mechanical and Process Engineering** Management, Technology and Economy MTEC PHYS **Physics Environmental Systems Sciences** USYS

Students ETH in total

21′000	B.Sc.+M.ScStudents
4′300	Doctoral Students

E/1

ITET – Research in E-Energy

E/2