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History 
    

Transformer 
“Electronic” Transformer  
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► Classical Transformer (XFMR) – History (1) 

* 1830  -  Henry/Faraday       Property of Induction  
* 1878  -  Ganz Company (Hungary)   Toroidal Transformer  (AC Incandescent Syst.) 
* 1880   -  Ferranti       Early Transformer 
* 1882  -  Gaulard  & Gibbs       Linear Shape XFMR (1884, 2kV, 40km) 
* 1884  -  Blathy/Zipernowski/Deri   Toroidal XFMR  (inverse type) 

* 1885  -  Stanley & (Westinghouse)   Easy Manufact. XFMR (1st Full AC Distr. Syst.) 

http://commons.wikimedia.org/wiki/File:William-Stanley_jr.jpg
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* 1889  -    Dobrovolski                 3-Phase Transformer 
* 1891  -  1st Complete AC System (Gen.+XFMR+Transm.+El. Motor+Lamps, 40Hz, 25kV, 175km) 

► Classical Transformer – History (2) 

http://commons.wikimedia.org/wiki/File:Doliwo-Dobrowolsky.jpg
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  1968 ! 

●  Electronic Transformer  ( f1 = f2 )  
●  AC or DC  Voltage Regulation  &  Current Regulation/Limitation/Interruption 



7/66 

■  f1 = f2   Not Controllable (!) 
■  Voltage Adjustment by Phase Shift Control (!) 

► Electronic Transformer    

■  Inverse-Paralleled Pairs of Turn-off Switches 
■  50% Duty Cycle of Input and Output Stage 
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■    Input/Output Isolation  
■  ―Fixed‖ Voltage Transfer Ratio (!) 
■    Current Limitation Feature  
■    f ≈ fres (ZCS) Series Res. Converter 

  1971 ! 
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  1980 ! 

■    No Isolation (!) 
■  ―Transformer‖ with Dyn. Adjustable Turns Ratio 
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■   Soft Switching in a Certain Load Range  
■   Power Flow Control by Phase Shift  between Primary & Secondary Voltage 

  1991 
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―Solid-State‖ Transformer (SST) 
    

XFMR Scaling Laws  
SST Application Areas / Concept 
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► Classical Transformer – Basics (1) 

- Voltage Transf. Ratio      * Fixed 
- Current Transf. Ratio             * Fixed 
- Active Power Transf.       * Fixed  (P1≈P2) 
- React. Power Transf.       * Fixed  (Q1 ≈ Q2) 
- Frequency Ratio  * Fixed  (f1=f2) 

- Magnetic Core Material  * Silicon Steel / Nanocrystalline / Amorphous / Ferrite  
- Winding Material       * Copper or Aluminium 
- Insulation/Cooling      * Mineral Oil or Dry-Type 
 
 
 
 
 

- Operating Frequency  * 50/60Hz  (El. Grid, Traction) or  162/3 Hz (Traction)   
- Operating Voltage   * 10kV or 20 kV (6…35kV)      
                                          * 15kV or 25kV  (Traction)                    
                                * 400V                                             

●  Magnetic Core  
    Cross Section 

●  Winding Window 
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► Classical Transformer – Basics (2) 

-  Advantages 
 
•  Relatively Inexpensive 
•  Highly Robust / Reliable 
•  Highly Efficient  (98.5%...99.5% Dep. on Power Rating) 
•  Short Circuit Current Limitation 
 
-  Weaknesses  
 
•  Voltage Drop Under Load 
•  Losses at No Load 
•  Sensitivity to Harmonics 
•  Sensitivity to DC Offset Load Imbalances 
•  Provides No Overload Protection 
•  Possible Fire Hazard 
•  Environmental Concerns 

 
•  Construction Volume 

 
• Low Frequency     Large Weight / Volume 

Pt  …. Rated Power 
kW …. Window Utilization Factor (Insulation) 
Bmax  ...Flux Density Amplitude 
Jrms… Winding Current Density (Cooling) 
f  .…. Frequency 


 


 


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► Classical Transformer – Basics (3) 

-  Advantages 
 
•  Relatively Inexpensive 
•  Highly Robust / Reliable 
•  Highly Efficient  (98.5%...99.5% Dep. on Power Rating) 
•  Short Circuit Current Limitation 

Welding Transformer (Zimbabwe) – Source: http://www.africancrisis.org  
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Next Generation 
Traction Vehicles 

SST Motivation 
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► Classical Locomotives 
-  Catenary Voltage     15kV  or 25kV 
-  Frequency                162/3Hz  or  50Hz 
-  Power Level             1…10MW  typ. 

●  Transformer: Efficiency              90…95% (due to Restr. Vol., 99% typ. for Distr. Transf.) 
  Current Density       6 A/mm2  (2A/mm2 typ. Distribution Transformer) 
  Power Density         2…4 kg/kVA 

! 
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► Next Generation Locomotives 
-  Trends *  Distributed Propulsion System  Volume Reduction  (Decreases Efficiency) 
 *  Energy Efficient Rail Vehicles    Loss Reduction             (Requires Higher Volume) 
 *  Red. of Mech. Stress on Track    Mass Reduction 

●  Replace LF Transformer  by   Medium Frequency Power Electronics Transformer     
●  Medium Frequency Provides Degree of Freedom    Allows Loss Reduction  AND  Volume Reduction 

ACLF  DC ACLF  ACMF  ACMF  DC   

Source: ABB 

SST 
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► Next Generation Locomotives 

●  Medium Frequ. Provides Degree of Freedom   Allows Loss Reduction AND Volume Reduction 

-  Loss Distribution of  Conventional  &  Next Generation Locomotives   

LF 
MF 

SST 
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Future Smart  
EE Distribution   

Source: TU Munich  



20/66 

► Advanced (High Power Quality) Grid Concept  
-  Heinemann (2001) 

●  MV AC Distribution with DC Subsystems (LV and MV) and Large Number of Distributed Resources  
●  MF AC/AC Conv. with  DC Link Coupled to Energy Storage provide High Power Qual. for Spec. Customers 

►
 

►
 

►
 

►
 

►
 

►
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► Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.  

- Huang et al. (2008) 

● SST as Enabling Technology for the ―Energy Internet‖ 
  
 - Full Control of the Power Flow 
 - Integr. of DER (Distr. Energy Res.)  
 - Integr. of DES (Distr. E-Storage) + Intellig. Loads 
 - Protects Power Syst. From Load Disturbances 
 - Protects Load from Power Syst. Disturbances 
 - Enables Distrib. Intellig. through COMM 
 - Ensure Stability & Opt. Operation 
 - etc.  
 - etc. 
 
  

●  Bidirectional Flow of Power & Information / High Bandw. Comm.   Distrib. / Local Autonomous Cntrl 

IFM =  Intellig. Fault 
           Management 

► 

► 
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► Passive Transformer  

●  Medium Freq.  Higher Transf. Efficiency Partly Compensates Converter Stage Losses 
●  Medium Freq.  Low Volume, High Control Dynamics  
 

-  Efficiency Challenge   

LF Isolation 
                        Purely Passive (a)  

  Series Voltage Comp. (b)   
  Series AC Chopper (c) 

 
MF Isolation                  

Active Input & Output Stage (d)     

LF 
MF 

SST 



23/66 

► Terminology  

McMurray      Electronic Transformer (1968) 
Brooks      Solid-State Transformer (SST, 1980) 
EPRI      Intelligent Universal Transformer (IUTTM) 
ABB      Power Electronics Transformer (PET) 
Borojevic      Energy Control Center (ECC) 
Wang      Energy Router 
etc. 
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Classification of  
SST Topologies  
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► Basic SST Structures (1)  

■  1st Degree of Freedom of Topology Selection   
         Partitioning of the AC/AC Power Conversion 
 

●  3-Stage Power Conversion with MV and LV  DC Link 
●  2-Stage with LV DC Link (Connection of Energy Storage) 
●  2-Stage with MV DC Link (Connection to HVDC System) 
●  1-Stage Matrix-Type Topologies   

*  DC-Link Based Topologies 
*  Direct/Indirect Matrix Converters 
*  Hybrid Combinations  
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■  1st Degree of Freedom of Topology Selection   
         Partitioning of the AC/AC Power Conversion 
 

●  3-Stage Power Conversion with MV and LV  DC Link 
●  2-Stage with LV DC Link (Connection of Energy Storage) 
●  2-Stage with MV DC Link (Connection to HVDC System) 
●  1-Stage Matrix-Type Topologies   

*  DC-Link Based Topologies 
*  Direct/Indirect Matrix Converters 
*  Hybrid Combinations  

► Basic SST Structures (1)  
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*  Phase-Modularity of Electric Circuit 
*  Phase-Modularity of Magnetic Circuit  

*  Phase-Integrated SST  

■  2nd Degree of Freedom of Topology Selection   
       Partial of Full Phase Modularity 
 

► Basic SST Structures (2) 



28/66 

●     Example of Three-Phase Integrated (Matrix)  
    Converter  &  Magn. Phase-Modular Transf. 

■  2nd Degree of Freedom of Topology Selection   
       Partial of Full Phase Modularity 
 

● Example of Partly Phase-Modular SST  

-  Enjeti (1997) -  Steimel (2002) 

► Basic SST Structures (2) 
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► Basic SST Structures ► Basic SST Structures (3) 

*  Single-Cell / Two-Level Topology  

ISOP = Input Series /  
           Output Parallel 
           Topologies 

●  Multi-Cell and Multi-Level Approaches 
  
●  Low Blocking Voltage Requirement 
●  Low Input Voltage / Output Current Harmonics 
●  Low Input/Output Filter Requirement  

■  3rd Degree of Freedom of Topology Selection   
       Partitioning of Medium Voltage   
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► Basic SST Structures ► Basic SST Structures (3) 

* Two-Level Topology  

■  3rd Degree of Freedom of Topology Selection   
       Partitioning of Medium Voltage  
 

Akagi  
(1981) 

McMurray 
(1969) 

Marquardt Alesina/  
Venturini  
(1981) 

* Multi-Level/ 
   Multi-Cell 
   Topologies 

●  Multi-Cell and Multi-Level Approaches 
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-  Bhattacharya (2012) 

●  13.8kV  480V 
●  15kV Si-IGBTs, 1200V SiC MOSFETs 
●  Scaled Prototype 

20kHz 

22kV 800V 

► Basic SST Structures (3) 
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●  Back-to-Back Connection of MV Mains by MF Coupling of STATCOMs   
●  Combination of Clustered Balancing Control with Individual Balancing Control 

-  Akagi (2005) 
 

► Basic SST Structures (3) 
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●  Very (!) Large Number of Possible Topologies    
 
* Partitioning of Power Conversion         Matrix & DC-Link Topologies 
* Splitting of 3ph. System into Individual Phases        Phase Modularity 
* Splitting of Medium Operating Voltage into Lower Partial Voltages     Multi-Level/Cell Approaches 
 

► Classification of SST Topologies 

-  Enjeti (2012) 

Degree of Power 
Conversion Partitioning 

Degree of 
Phase Modularity Number of Levels 

Series/Parallel Cells 
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►  Functional Partitioning of AC/DC Power Conversion 

■  Required Functions    
 

■  Alternative Sequences of Equal Overall Functionality   
 

Isolated Front End (IFE)    
 

Isolated Back End (IBE)    
 

Fully Integrated    
 

●  F:     Folding of the AC Voltage into a│AC│Voltage 
●  CS:   Input Current Shaping 
●  I:     Galvanic Isolation & Voltage Shaping 
●  VR:  Output Voltage Regulation  

! 
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►  Isolated Back/Front-End Topology 

■  Isolated DC/DC Back End    
 

■  Isolated AC/│AC│Front End    
 

●  Typical Multi-Cell SST Topology 
 

●  Two-Stage Multi-Cell Concept 
●  Direct Input Current Control 
●  Indirect Output Voltage Control 
●  High Complexity at MV Side  

●  Swiss SST  (S3T) 
 

●  Two-Stage Multi-Cell Concept 
●  Indirect Input Current Control 
●  Direct Output Voltage Control 
●  Low Complexity on MV Side 
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SST Demonstrator Systems 
    

Future Locomotives  
Smart Grid Applications 
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► 1ph. AC/DC Power Electronic Transformer - PET   

P     =  1.2MVA, 1.8MVA pk  
9 Cells (Modular) 
 
54 x (6.5kV, 400A IGBTs) 
18 x (6.5kV, 200A IGBTs) 
18 x (3.3kV, 800A IGBTs) 
 
9   x  MF Transf. (150kVA, 1.8kHz) 
1   x  Input Choke  

- Dujic et al. (2011) 
 
- Rufer   (1996) 
- Steiner   (1997) 
- Heinemann (2002) 



38/66 

► 1.2 MVA  1ph. AC/DC Power Electronic Transformer   

■  Cascaded H-Bridges – 9 Cells   
■  Resonant LLC DC/DC Converter Stages 



39/66 

► 1.2 MVA  1ph. AC/DC Power Electronic Transformer   

■  Cascaded H-Bridges – 9 Cells   
■  Resonant LLC DC/DC Converter Stages 

Efficiency 
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► Modular Multilevel Converter 

-   Marquardt (2003) 
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► Modular Multilevel Converter 

-   Marquardt (2003) 
 
-   Module Power             270kW 
-   Module Frequency       350Hz 
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► SiC-Enabled Solid-State Power Substation 

-  Das et al. (2011) 
-  Lipo (2010) 
-  Weiss (1985 for Traction Appl.) 

- Fully Phase Modular System 
- Indirect Matrix Converter Modules (f1 = f2) 
- MV ∆-Connection (13.8kVl-l, 4 Modules in Series) 
- LV  Y-Connection (465V/√3,  Modules in Parallel) 

●  SiC Enabled 20kHz/1MVA ―Solid State Power Substation‖ 
●  97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz) 



43/66 

-  Das (2011) 

- Fully Phase Modular System 
- Indirect Matrix Converter Modules (f1 = f2) 
- MV ∆-Connection (13.8kVl-l, 4 Modules in Series) 
- LV  Y-Connection (465V/√3,  Modules in Parallel) 

► SiC-Enabled Solid-State Power Substation 

●  SiC Enabled 20kHz/1MVA ―Solid State Power Substation‖ 
●  97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz) 
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► MEGA Cube 
-   Rated Power  1MW 
-   Frequency  20kHz 
-   Input Voltage 12kVDC  
-   Output Voltage 1.2kVDC 
 
-   Efficiency Goal 97% 

■  ISOP Topology  – 6/2x3 - Input / Output 
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► 166kW / 20kHz DC-DC Converter Cell 

●   Half-Cycle DCM Series Resonant DC-DC Converter 
 
●   Medium-Voltage Side  2kV   
●   Low-Voltage Side                   400V   

80kW  Operation 
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MEGA Link  
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●  2-Level Inverter on LV Side / HC-DCM-SRC DC-DC Conversion / Cascaded H-Bridge MV Structure 

► MEGALink @ ETH Zurich 

SN                  = 630kVA 
ULV        = 400 V 
UMV   = 10kV 
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► Optimum Number of Converter Cells 

-      Opt. Device Voltage Rating for Given MV Level 
-      ηρ-Pareto Opt. (Compliance to IEEE 519)  

■       Trade-Off         High Number of Levels     
 
 
 

               High Conduction Losses/   
               Low Cell Switchg Frequ./Losses 
                                 (also because of Device Char.)    

■       1200V … 1700V  Power Semiconductors best suited for 10kV  Mains  (No Advantage of SiC)  

1 MVA 
10kV  400V 

50Hz 
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-    Influence of     * FIT Rate (Voltage Utilization) 
               * Junction Temperature 
                                 * Number of Redundant Cells 

■       Trade-Off     Mean-Time-to-Failure vs. 
                                    Efficiency / Power Density 

► Optimum Number of Converter Cells 

No Redundancy 
1700V IGBTs, 60% Utilized 

■   High MTBF  also for Large Number of Cells (Repairable)  / Lower Total Spare Cell Power Rating 
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► SST  vs. LF Transformer + AC/AC or AC/DC Converter 

■    Clear Efficiency/Volume/Weight   Advantage  of  SST  for DC Output (98.2%) 
■    Weakness of AC/AC SST  vs. Simple LF Transformer (98.7%) -  5 x Costs, 2.5 x Losses 

-    Specifications      1MVA 
                          10kV  Input 
                         400V  Output 
                         1700V IGBTs  (1kHz/8kHz/4kHz) 

-    LF Transformer      98.7 % 
                          16.2 kUSD 
                         2600kg (5700lb)                         

LFT + AC/DC 
Converter 

AC/AC  
SST   

AC/DC  
SST   

LFT 

!                         

■   AC/AC ■   AC/DC 



51/66 

► Efficiency Advantage of Direct MV AC – LV DC Conversion 

■    Comparison to LF Transformer &  
         Series Connected PFC Rectifier (1MVA) 

► 

─   MV AC/DC Stage 
             Weight (Top) and  
      Costs (Bottom) 
      Breakdown 
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Potential Future  
SST Application Areas 

Datacenters 
Oil and Gas Industry 

Power-to-Gas 
Distributed Propulsion Aircraft 

More Electric Ships 
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► AC vs. Facility-Level DC  Systems for Datacenters 
■    Reduces Losses &  Footprint 
■    Improves Reliability & Power Quality 

─   Conventional US 480VAC Distribution 

■    Future Concept:  Unidirectional SST  /  Direct  6.6kV AC   400V DC Conversion 

─   Facility-Level 400 VDC Distribution 

Source:               2007   
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► Future Subsea Distribution Network – O&G Processing 

- Devold (ABB 2012) 

●  Transmission Over DC, No Platforms/Floaters 
●  Longer Distances Possible 
●  Subsea O&G Processing 
 
 
 

●  Weight Optimized Power Electronics 
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► Power-to-Gas    

– Hydrogenics 100 kW H2-Generator (η=57%) 

■     Electrolysis for Conversion of Excess Wind/Solar Electric Energy   into   Hydrogen   
                                                                                                                                                  Fuel-Cell Powered Cars 
                                                                                                                               Heating 
■     High-Power @ Low DC Voltage (e.g. 220V) 
■     Very Well Suited for MV-Connected SST-Based Power Supply 
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► Future Hybrid Distributed Propulsion Aircraft    

■   Powered by Thermal Efficiency Optimized Gas Turbine  and/or  Future Batteries  (1000 Wh/kg) 
■   Highly Efficient Superconducting Motors Driving Distributed Fans (E-Thrust) 
■   Until 2050: Cut CO2 Emissions by 75%, NOx by 90%, Noise Level by 65% 

Source: 
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Source:    

■   NASA N3-X Vehicle Concept using Turboel. Distrib. Propulsion  
■   Electr. Power Transm. allows High Flex. in Generator/Fan Placement 
■   Generators: 2 x 40.2MW / Fans: 14 x 5.74 MW  (1.3m Diameter) 

► Future Distributed Propulsion Aircraft    
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►  Future Military Applications    

■   MV Cellular DC Power Distribution on Future Combat Ships  etc. 

Source:  
General Dynamics 

► ―Energy Magazine‖ as Extension of  Electric Power System / Individual Load Power Conditioning 
►   Bidirectional Power Flow for Advanced Weapon Load Demand  
►   Extreme Energy and Power Density Requirements  



59/66 

Conclusions 
SST Limitations / Concepts 

 Research Areas 
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► SST Ends the ―War of Currents‖ 

■   No ―Revenge‖ of T.A. Edison but Future ―Synergy‖ of AC and DC Systems ! 
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► Key Messages   #1/3 

► MV Grid/Load-Connected AC/DC  and DC/DC  Converter Systems  
► Volume/Weight Limited Systems  where  2-4 % of Losses Could be Tolerated 

■ Basis SST Limitations  

■ Potential Application Areas  

 
— Efficiency (Rel. High Losses of 2-4%) 
— High Costs  (Cost-Performance Adv. still to be Clarified) 
— Limited Weight/ Volume Reduction vs. Conv.  Transf. (Factor 2-3) 
— Limited Overload Capability 
— Limited Overvoltage Tolerance 
— (Reliability)  

— Traction Vehicles 
 

— MV Distribution Grid Interface  
    *  DC Microgrids (e.g. Datacenters) 
    *  Renewable Energy (e.g. DC Collecting Grid for PV, Wind; Power-to-Gas)   
    *  High Power Battery Charging (E-Mobility) 
    *  More Electric Ships 
    *  etc.  
 

— Parallel Connection of LF  Transformer and SST (SST Current Limit – SC Power does not Change) 
— Temporary Replacement of Conv. Distribution Transformer 
— Military Applications  
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► Key Messages   #2/3 

■ Advantageous Circuit Approaches   

► Fully Modular Concepts  

— Single Transformer Solutions (MMLC-Based) 
— HV-SiC Based Solutions (SiC NPC-MV-Interface)   

► Alternatives   

*  Redundancy (!) 
*  Scalability (Voltage / Power) 
*  Natural Voltage / Current Balancing 
*  Economy of Scale  

—  Resonant Isolated Back-End Topology (ABB) 
—  Resonant Isolated Front-End Topology (Swiss-SST) 
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► Key Messages   #3/3 

■  SST Design for Production  Multi-Disciplinary Challenge    

—  MV (High) Power Electronics incl. Testing 
—  Digital Signal Processing (DSP & FPGA)  
—  MF High Power Magnetics 
—  Isolation Coordination / Materials 
—  Power Systems   
—  etc. 

—  Multi-Level  vs. Two-Level Topologies with HV SiC Switches 
—  Low-Inductance MV Power Semiconductor Package 
—  Mixed-Frequ./Voltage Stress on Insul. Materials 
—  Low-Loss High-Current MF Interconnections / Terminals 
—  Thermal Mangmnt (Air and H2O Cooling, avoiding Oil) 
—  SST Protection  
—  SST Monitoring  
—  SST Redundancy (Power & (!) Control Circuit) 
—  SST  vs. FACTS (Flexible AC Transmission Systems)  
—  System-Oriented Analysis  Clarify System-Level Benefits (Balancing the Low Eff. Drawback) 

► 50/60Hz XFRM Design Knowledge is NOT (!) Sufficient 

■  Main Research Challenges     

► Required Competences 
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► SST Technology Hype Cycle    

■   Different States of Development of SSTs for 
                  Smart Grid  &  Traction Applications  

Through of  
Disillusionment 

SSTs  for Smart Grids 

SSTs for Traction 
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Thank  You! 
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Questions 


