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… X-Fast Charging 



● Falling Battery Costs   Price Parity of EVs and ICE-V by Mid-2020s  Tipping Point for EV Industry 

Electric Vehicle Outlook 2019
■ Bloomberg NEF  — By 2040 — 57%  of All Passenger Vehicle Sales  

30% of Global Passenger Vehicle Fleet  

1/42



EV Range Anxiety 
■ More than 70% of Buyers Want 200+ Miles EV  

● Long Distance Travel  — BEV vs. ICE-V   Only 8 min Difference for 300-Mile Battery & XFC

Source: A. Meintz et al., 
2017, Journal of Power 
Sources
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Source: S. Srdic et al., 
IEEE Electr. Mag., 2019



■ 200+ Miles EV  50+kWh 

● 350kW  Extreme Fast Charging (XFC)   Only  10 min  Charging Time 
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Source: S. Srdic et al., 
IEEE Electr. Mag., 2019

Source: J. Voelcker, 
IEEE Spectrum, 2019

EV Charging Anxiety



State-of-the-Art Fast Charging
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● Up to 350 kW of Charging Power &  Up to 920V DC Voltage 

■ Standards  — CHAdeMO (global), CCS1 (US), CCS2 (EU), GB/T (China), TESLA (global)    

Source: S. Srdic et al., 
IEEE Electr. Mag., 2019
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● TESLA Model S85  — Charging Profile (CC/CV) / SOC / Charging Power 

DC Fast Charging

■ State-of-the-Art DC XFC  — 400V 3-Φ AC / PFC Rectifier / Isol. DC/DC-Converter
■ Isol. DC/DC Converter     — Simplifies Parallel Connection & Safety Concept    

Source: S. Srdic et al., 
IEEE Electr. Mag., 2019
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● 400kWh / 200kW  Battery Buffer  

DC Fast Charging Station
■ TESLA Supercharger Station in Mountain View, California 

Source: 
Schneider
Electric

Source: S. Srdic et al., 
IEEE Electr. Mag., 2019

https://www.industr.com/de/__image/a/2387723/alias/xl/v/2/c/20/ar/flexible/fn/Trihal-Transformator.jpg
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● Avg. Power < Rated Power & Peak Power  Avg. Power Grid-Tie (!)

Charging Station Battery Buffer 
■ Large Variation of Power Demand (High Peak Load Tariff etc.)  Energy Buffer
■ $$$-Model-Based Opt. Sizing incl. Ancillary Grid Services / Overnight Re-Chg / etc.  



Source: Y. Zhang, 
www.geidco.org, 
2018
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● Supercharger  =  12 On-Board Charger Modules in Parallel 12x10kW = 120kW  

TESLA Charging Station Layout

≈ 4.5m

“User Interface”

Source: TESLA

Source: E. Loveday



400V   800V  Charging
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■ 400V — e.g. 100 Cells in Series, 4 Parallel    300 … 420V
■ 800V — e.g. 200 Cells in Series, 2 Parallel    600… 840V

800V vs. 400V Battery Comparison (1) 

87.5 A

● Higher Battery Current   Lower Charging Time  BUT Faster Aging
● 2x Ichg/Cell  4x Loss/Cell  (1mΩ/Cell,  3kW  9kW Thermal Batt. Loss)

Source: C. Jung, IEEE 
Electr. Mag., 2017

Umax = 415V Umax = 830V
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● 800V Standards Not Yet Complete, Necessary Design Modifications, etc.
● Higher # of Series Cells  Higher Complexity &  $$$ of Batt. Management System

800V vs. 400V Battery Comparison (2) 
■ 10-15kg Lower Cable Weight @ 200kW
■ 0.5 dm3 Lower Connector Volume 
■ Lower IGBT $$$  etc.
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● Typ. Infrastructure Delivers 500V DC (600V IGBTs) & 50kW  
● Charging Time Defined by  U ∙ I   Current Limited by Connector System 

DC Charging Connectors 
■ Practical Limit Due to Safety Effort, etc. 
■ “Low Voltage” Def. as < 1000V AC / < 1500V DC  in Standards

Source: C. Jung, IEEE 
Electr. Mag., 2017



Charging Station Concepts
∙   AC-Coupled
∙   DC-Coupled
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● Lower # of Conversion Stages
● Lower Complexity / $$$ / Losses 
● DC-Voltage  Symmetric to Ground & High-R Gndg
● Active Front-End or 12-Pulse Rectifier Stage

Charging Station Concepts

■ AC-Coupled 

■ DC-Coupled  

Source: S. Srdic et al., 
IEEE Electr. Mag., 2019



SST-Based XFC 
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η = 97.6%
ρ = 0.8kW/dm3

AC/DC Solid-State Transformer (SST)
■ Medium-Frequency Isolation 
■ Low Volume / High Efficiency 

● Unidirectional  1-Φ AC/DC SST Charger

 50kW Demonstrator System 

Source: S. Srdic et al., 
IEEE Electr. Mag., 2019
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● US DOE $7m 400kW / 4.8kV or 13.8kV AC-Input SST-Based XFC
● Project Targets   96.5% G2V Efficiency, Weight: 1/4, Footprint: 1/2  
● Partners             General Motors, Delta Electronics, DTE Energy, others

■ Exaggerated Expectations in Literature 

SST-Based vs. LFT-Based XFC (1) 

Source: S. Srdic et al., 
IEEE Electr. Mag., 2019
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● 675kW @ 92% G2V Eff. (estimated)   2700kW @ 97%  /  Factor 4 @ Same Footprint !  

■ State-of-the-Art TESLA XFC Station  vs.  SST-Based Solution

SST-Based vs. LFT-Based XFC (2) 

Source: S. Srdic et al., 
IEEE Electr. Mag., 2019
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● Modularity  Redundancy
● Multi-Winding Transformer   Risk of Oscillations Between the Modules

1-Φ AC/DC SST Topologies  (1)
■ PFC Rectifier Stage  & Fixed Voltage Transfer Ratio Res. DC-Transformer
■ Fully / Partially Modular ISOP Structure (Impedance Matching) 
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● MMLC Topology   Modularity Limited to Critical System Part / Higher Semiconductors Effort

1-Φ AC/DC SST Topologies  (2)
■ Matrix-Type AC/DC Conversion
■ Fully Modular ISOP &  MMLC Structure
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● Different Partitioning of MV Input & AC/DC Conversion  Very Large # of Possible Conv. Topologies

1-Φ AC/DC SST Topologies  (3)
■ Example of  Primary-Modular & Secondary-Integrated ISOP Structure   



Example of 1-Φ AC/DC SST for Traction (1)

P =  1.2MVA, 1.8MVA pk
9 Cells (Modular)

54 x (6.5kV, 400A IGBTs)
18 x (6.5kV, 200A IGBTs)
18 x (3.3kV, 800A IGBTs)

9   x MF Transf. (150kVA, 1.8kHz)
1   x  Input Choke

- Dujic et al. (2011)

- Heinemann           (2002)
- Steiner/Stemmler (1997)
- Schibli/Rufer (1996)
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Efficiency

■ Cascaded H-Bridges – 9 Cells
■ Resonant LLC DC/DC Converter Stages

■ Same Overall Volume as Conventional System
■ Future Development Targets Half Volume 
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Example of 1-Φ AC/DC SST for Traction (2)



3-Φ AC/DC SST
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● 166kW / 20kHz  Si-IGBT DC/DC Converter Module (±1kV  400V DC-Transformer) / 98% Eff.

■ Fully Modular Approach
■ MEGA-Link @ ETH Zurich 

3-Φ AC/DC SST Topologies  (1)



3-Φ AC/DC SST Topologies  (2)

● Modularity Limited to Critical System Part / Higher Semiconductors Effort

■ Matrix-Type MMLC Approach
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3-Φ AC/DC SST Topologies  (2)

● No Redundancy (!)
● Redundancy Requires Series-Connection of Power Semiconductors (!) 

■ Non-Modular Approach
■ 15kV SiC IGBTs Allow Operation @ 13.8kV Mains 
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● 3-Φ Extension (N. Mohan) of Basic 1-Φ AC/AC Concept (McMurray, 1968) 

■ Minimum MV-Side 
Complexity Matrix-Type 
Approach  

3-Φ AC/DC SST Topologies  (3)

Source: US Patent 3´517´300, 
W. McMurray, 1970



SST Protection



Potential Faults of MV/LV Distribution-Type SSTs
■ Extreme Overvoltage Stresses on the MV Side for Conv. Distr. Grids
■ SST more Appropriate for Local Industrial MV Grids     

● Conv. MV Grid Time-Voltage Characteristic
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



Protection of LF-XFRM  vs. SST Protection
■ Missing Analysis of SST Faults (Line-to-Line, Line-to-Gnd, S.C., etc.) and Protection Schemes

■ Protection Scheme Needs to Consider:  Selectivity / Sensitivity / Speed /Safety /Reliability

● Proposed SST Protection
Scheme with Minimum # of
Protection Devices
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Pre-Charge

● Overvoltage Protection (Lightning Strike)

*  High Arrester Clamping Voltage
*  Filter Inductor > 8% for Current Limiting
*  Min. DC Link Capacitance
*  Sufficient Semicond. Blocking Capability
*  Grounding – Lower Stress if Unearthed



… Datacenters

Source: Etech 7
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● “The Cloud is Powered By Coal” (40% Share of Electricity Generation)
● 100x Energy Used for i-Phone Charging is Used for Data Processing (1.6GB/Month Avg.)

■ Global Electricity Demand  & Digital Universe (Voice/Video/Internet) Consumption 

The Cloud / Hyper-Scale Datacenters

▲… Greenpeace Estimates for ICT
Source: M.P. Mills, 

Digital Power Group,
2013



Server-Farms
up to 450 MW

99.9999%/<30s/a
$1.0 Mio./Outage

Since 2006 
Running Costs > 

Initial Costs

■ MV (kV)  Power-Supplies-on-Chip (0.9V) Power Conversion
■ Short Innovation Cycles
■ Modularity / Scalability

Hyper-Scale Datacenters
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1.  Higher Availability 
2.  Higher Efficiency
3.  Higher Power Density  
4.  Lower Costs  

Source: Facebook



State-of-the-Art Datacenters

● Per 100W Compute Load   +200…300W typ.  for Infrastructure & Cooling
● Eliminate Conversion Stages, Use High Distribution Voltage (Low $$$  Select UDC of PFC Rectifiers)

■ Conventional 480VAC Distribution  / Energy Use 
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Source:               2007  

Source: G. AlLee et al., IEEE 
Power & Energy Mag., 2012



AC vs. 400V DC System  

■ Conventional 480VAC Distribution

■ Facility-Level 400 VDC Distribution;  380V Rated (± 190V), Range: 260V…410V
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● + 5…7% Efficiency  & -33% Floor Space & -36% Lifetime $$$ & 0.9999996 Availability

Source:               2007  



● MV-Grid (kV) Chip (0.9V) in 2 Steps  typ. 3% Efficiency Gain, Smaller Footprint, etc.

■ Solid-State Transformer-Based 6.6kV AC  400V DC 

■ Facility-Level 400 VDC Distribution

AC

DC

Source:               2007  

1-Φ Medium-Voltage Grid Interface

!
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Research @ ETH Zurich



25kW SwiSS-Transformer @ ETH Zurich  
■ Bidirectional 1-Φ 3.8 kVrms AC  400V DC Power Conversion
■ Based on 10kV SiC MOSFETs
■ Full Soft-Switching

► 35…75kHz  iTCM Input Stage                             ► 48kHz DC-Transformer Output Stage

3.3kW/dm3

3.8 kW/dm3
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■ Full-Bridge iTCM – integrated Triang. Current Mode Operation  Enables ZVS

► Full-Load Measurement (25kW @ 3.8kVrms AC, 7kV DC)  - ZVS  Over Full AC Cycle (!)

─ ZVS Requires Change of Sw. Current Direction in Each Sw. Period
─ Open-Loop Variation of Sw. Frequency for Const. ZVS Current (35…75kHz) 
─ Separate Optim. of ZVS and Input Inductor Possible
─ No Large Ripple Input Current

3.8kV  7kV  ZVS AC/DC Converter

3.3kW/dm3
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7kV  400V DC/DC Converter (1)
■ MV-Side Half-Bridge

► Half-Bridge for Cutting Voltage in Half / Lower Switch Count

─ 48kHz Sw. Frequency, ZVS
─ Cooling of Power Semicond. by Floating Heatsinks (Not Shown)
─ Creepage Distances Ensured by PCB Slots

3.8 kW/dm3
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■ MF-Transformer Measurement

► Transformer Prototype / Loss Distribution / Efficiency 

─ Fully Tested @ 25kW / 7 kV
─ Calorimetric Loss Measurement
─ 99.64% Efficiency
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7kV  400V DC/DC Converter (2)



Overall Performance 

► Red. of Losses & Volume by Factor of  > 2 Comp. to Alternative Approaches (!) 
► Significantly Simpler Compared to Multi-Module SST Approach

■ Full Soft-Switching
■ 98.1%  Overall Efficiency @ 25kW
■ 1.8 kW/dm3 (30W/in3)
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



1-Φ 2.4kVrms AC  54V DC  

► Power Density of 0.4kW/dm3 (6.6W/in3)
► 96% Overall Efficiency @ 25kW

■ Published @ IEEE APEC 2017 
■ N=5 Cells @ MV-Side  / Cost Optimum
■ PFC Rectifier  1.2kV Si IGBTs & SiC Diodes
■ DC/DC Conv.   600V SJ & 100V MOSFETs 
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1-Φ 2.4kVrms AC  54V DC  

► Power Density of 0.4kW/dm3 (6.6W/in3)
► 96% Overall Efficiency @ 25kW

38/42

■ Published @ IEEE APEC 2017 
■ N=5 Cells @ MV-Side  / Cost Optimum
■ PFC Rectifier  1.2kV Si IGBTs & SiC Diodes
■ DC/DC Conv.   600V SJ & 100V MOSFETs 





10kV
10kV
10kV
10kV 

- SiC Super-Switch 
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40kV SiC Super-Switch @ ETH Zurich (1) 

● 40kV  Blocking Capability   Up to 28kV DC-Link Voltage / Operation @ 1-Φ 15kV  

■ 4 x 10kV Cascaded SiC MOSFETs
■ Quasi-X-Level (Staggered) Switching 
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● Integrated Gate Drive / Voltage Balancing / Protection / etc.

■ 300kVA  Intelligent Power Module — Two-Level Bridge-Leg Appearance  

40kV SiC Super-Switch @ ETH Zurich (2) 



100 kVA / dm3
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■ Based on 2-Chip 10kV SiC Power MOSFET Packages
■ Top- & Bottom-Side Isol. Cooling Surfaces 
■ Single Isol. Drive Signal 

40kV SiC Super-Switch @ ETH Zurich (3) 

● Integrated Gate Drive / Voltage Balancing / Protection / etc.

250x150x80mm3



Source: whiskeybehavior.info Conclusion



Future SST Applications in XFC & Datacenters

■ Realization $$$  & DC-Protection  Remain as Challenges (!)
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■ SST  Isolated MV-AC/DC Conversion @ High Efficiency / Compactness
■ XFC / Datacenters — No Competition Against Existing Infrastructure
■ Ancillary Services & Connection to Future MV-DC Grid    

Ultra-Fast Charging
PV

MF Transformer Concepts
for Traction
(Thyristors)



Thank You !

The „Detroit Electric“ 
20mph, 80miles/Charge
Anderson Electric Car Company
1907 - 1939


