

Potential Future Applications & Topologies of Solid-State-Transformers (SSTs)

J. W. Kolar & J. E. Huber

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Feb. 14, 2019

Outline

SST Origins

- Traction
- Smart Grids
- Key Characteristics
- *MEGATRENDS* \rightarrow Future SST Application Areas
 - Datacenter

 - Smart Cities / BuildingsHigh Power EV Charging
 - More Electric/Hybrid Aircraft

 - More Electric/Hybrid Ships
 Renewable Energy Wind / Solar
 - Deep Sea Exploration etc.
- Key Topologies
- Industry Demonstrators
 Conclusions

Th. Guillod G. Ortiz Acknowledgement: **D. Rothmund**

SST Origins

Next Generation Traction Vehicles

Classical Locomotives

- Catenary Voltage 15kV or 25kV
- FrequencyPower Level

ETH zürich

 $16^{2}/_{3}$ Hz or 50Hz 1...10MW typ.

90...95% (due to Restr. Vol., 99% typ. for Distr. Transf.) 6 A/mm² (2A/mm² typ. Distribution Transformer) 2...4 kg/kVA

Passive Transformer

• Magnetic Core Cross Section

$$A_{Core} = \frac{1}{\sqrt{2}\pi} \frac{U_1}{\hat{B}_{\max}} \frac{1}{N_1}$$
$$A_{Wdg} = \frac{2I_1}{k_W J_{\text{rms}}} N_1$$

• Winding Window

$$A_{Core}A_{Wdg} = \frac{\sqrt{2}}{\pi} \frac{P_t}{k_W J_{\rm rms} \hat{B}_{\rm max} f} \sim L^4$$

 $\uparrow \uparrow \uparrow$

 P_{t} Rated Power k_{W} Window Utilization Factor B_{max} ... Flux Density Amplitude J_{rms} ... Winding Current Density f Frequency

■ Low Frequency → Large Weight / Volume
 ■ Trade-off → Volume vs. Efficiency

- * Distributed Propulsion System → Volume Reduction
 * Energy Efficient Rail Vehicles → Loss Reduction
 * Red. of Mech. Stress on Track → Mass Reduction Trends

(Requires Higher Volume)

Source: ABB

Conventional AC-DC conversion with a line frequency transformer (LFT).

AC-DC conversion with medium frequency transformer (MFT).

- **Replace LF Transformer with** *MF Transformer* & *Power Electronics Interface* \rightarrow *SST*
- Medium-Frequency Allows Reduction of Volume & Losses

\rightarrow Next Generation Locomotives (2)

Loss Distribution of Conventional & Next Generation Locomotives

• MF Provides Degree of Freedom \rightarrow Reduction of Volume & Losses (!)

5/61

Advanced (High Power Quality) Grid Concept

- Heinemann / ABB (2001)

- MV AC Distribution with DC Subsystems (LV and MV) and Distributed AC & DC Sources /Loads
 MF AC/AC Conv. with DC Link Coupled to Energy Storage provide High Power Qual. for Spec. Customers

6/61

Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.

- Huang et al. (2008)
- SST as Enabling Technology for the "Energy Internet"
- Full Control of the Power Flow
- Integr. of DER (Distr. Energy Res.)
- Integr. of DES (Distr. E-Storage) + Intellig. Loads
- Protects Power Syst. From Load Disturbances
- Protects Load from Power Syst. Disturbances
- Enables Distrib. Intellig. through COMM
- Ensure Stability & Opt. Operation
- etc.
- etc.

ETH zürich

IFM = Intellig. Fault Management

• Bidirectional Flow of Power & Information / High Bandw. Comm. \rightarrow Distrib. / Local Autonomous Cntrl

≻

Source: www.yacht-chartercroatia.com

► AC vs. DC Power Systems

- **DC Voltage Ensures Max. Utiliz. of Isol. Voltage**
- **Quadratic Dependency of Losses on Voltage Level** \rightarrow **F**

→ Highest Voltage RMS Value / Lowest Current (!)
 → Reduction of Conductor Cross Section

- **DC Voltage Level Transformation Requires Power Electronics Interfaces**
- DC Fault Current Clearing is Challenging (Missing Regular Current Zero Crossing)

8/61

AC vs. DC Power Transmission

■ AC Cable - Thermal Limit Due to Cap. Current @ L = 0

Costs AC LFAC DC Losses Cable L_{LFAC} Loc Losses Cable Distance

Low-Frequency AC (LFAC) as Possible (Purely Passive) Solution for Medium Transmission Distances

9/61

SST Key Characteristics

■ Interface to Medium-Voltage / Medium-Frequency Isolation / AC or DC Input and/or Output

AC Load

IFM

AC Load

Remark

Trade-Off - Controllability vs. Efficiency

- Lower Efficiency of SST Compared to "Grid-Type" Passive Transformer
- Medium Freq. \rightarrow Higher Transf. Efficiency only Partly Compensates Converter Stage Losses

SST Development Cycles

Development Reaching Over Decades – Matched to "Product" Life Cycle

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.

Global Megatrends

Digitalization _____ Urbanization Sustainable Mobility Renewable Energy Etc.

Server-Farms up to 450 MW

Since 2006

Running Costs >

99.9999%/<30s/a \$1.0 Mio./Shutdown

- Ranging from Medium Voltage to Power-Supplies-on-Chip
 Short Power Supply Innovation Cycles
 Modularity / Scalability

- Higher Availability
- Higher Efficiency
 Higher Power Density
- Lower Costs

Source: REUTERS/Sigtryggur Ari

33 Watts

60 Watts

→ Future *Modular* SST-Based Power Distribution

- **5...7% Reduction in Losses & Smaller Footprint**
- Improves Reliability & Power Quality
- Conventional

ETH zürich

- Direct 3- Φ 6.6kV AC \rightarrow 48V DC Conversion / Unidirectional SST

• $MV \rightarrow 48V \rightarrow 1.2V$ - Only 2 Conversion Stages from MV to CPU-Level (!)

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.

Urbanization

- 60% of World Population Exp. to Live in Urban Cities by 2025
- **30 MEGA Cities Globally by 2023**

Selected Current & Future MEGA Cities $2015 \rightarrow 2030$

15/61

→ Smart Cities/Grids/Buildings

- Masdar = "Source"
- Fully Sustainable Energy Generation
 * Zero CO₂
 * Zero Waste
- EV Transport / IPT Charging
 to be finished 2025

→ Smart Cities/Grids/Buildings

- Masdar = "Source"
- Fully Sustainable Energy Generation
 * Zero CO₂
 * Zero Waste

- EV Transport / IPT Charging
 to be finished 2025

\rightarrow DC Microgrids

- **Local DC Microgrid Integrating Loads/Ren. Sources/Storage** No Low-Voltage AC/DC Conversion \rightarrow Higher Efficiency & Lower Realization Effort

- Future SST-Based Concept

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.


```
Sustainable Mobility
```

- EU Mandatory 2020 CO₂ Emission Targets for New Cars
- 147g CO₂/km for Light-Commercial Vehicles
 95g CO₂/km for Passenger Cars
 100% Compliance in 2021

\rightarrow Ultra-Fast / High-Power EV Charging

- Medium Voltage Connected Modular Charging Systems
- Very Wide Output Voltage Range (200...800V)

Source: Porsche Mission-E Project

- E.g., Porsche *FlexBox* incl. Cooling
- Local Battery Buffer (140kWh)
- − 320kW \rightarrow 400km Range in 20min

→ Bidirectional SST-Based MV Interface

Conventional

ETH zürich

Future SST-Based Concept

- On-Site Power / Energy Buffer → "Energy-Hub"
 Power / Energy Management → Peak Load Shaving & Grid Support / Stabilization

Sustainable Air Transportation

- Massive Steady Increase of Global Air Traffic Over the Next Decades
- Need for 70[°]000 New Airliners over the Next 20 Years (Boeing & Airbus) Stringent *Flightpath 2050 Goals* of ACARE \rightarrow Reduction of CO₂/NO_x/Noise Emissions

GLOBAL AIR TRAFFIC (TRILLION REVENUE PASSENGER KILOMETRES)

Traffic is expected to double in the next 15 years

Source: International Civil Aviation Organization (ICAO)/Airbus 2015

-> Future Distributed Propulsion Aircraft

Cut Emissions Until 2050

- CO₂ by 75%,
- NO_x by 90%, Noise Level by 65%

Turbo Generators E-Fans / Continúous Nacelle

- Wing-Tip Mounted Eff. Optimized Gas Turbines & Distributed E-Fans ("E-Thrust")
 MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

-> Future Aircraft Electric Power System

MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

ETH zürich

Generators — 2 x 40.2MW (NASA) E-Fans — 14 x 5.7 MW (1.3m Diameter) ٠

Sustainable Maritime Transportation

- 80% of All Globally Traded Goods Transported by Ships
- IMO \rightarrow Ship Energy Eff. Management Plan (SEEMP) & Energy Eff. Design Index (EEDI)
- Crude Oil \rightarrow New Fuel Types (LNG) Fully-Electric Port Infrastructure

Power Electronic Systems Laboratory

ETH zürich

Hybrid Diesel-Electric Propulsion

- No Mech. Coupling of Propulsion & Prime Movers (DGs) \rightarrow Eff. Optim. Load Distrib. to the DGs
- Energy Storage (Batt., Fuel Cell, etc.)
- **Peak Shaving** – Opt. Gen. Scheduling - High Dyn. Performance DG 1 DG 2DG 4DG 3 G \mathbf{G} G Medium-Voltage AC / 60 Hz Medium-Voltage AC / 60 Hz Power Distribution Power Distribution AC AC AC. AC AC, AC \mathbf{M} Μ /DC /DC /DC AC 2 AC 1/DC /DC /DC **∢**–||+ Low-Voltage Low-Voltage DC DC DC, DC, DC, DC/ AC / DC/DC AC AC AC - -- -ES 1ES 2PM 2PM 1
- Conv. AC Power Distrib. Network → Disadvantage of Const. Prime Mover / Generator Speed

\rightarrow Shipboard DC Power Distribution

- Future DC/AC-SST Interface to Low-Voltage AC & DC Grid Future DC/DC-SST Interface to Energy Storage (ES)

1kV/< 20MW or 1...35kV/20...100MW DC Distribution (Radial or Ring, Central. or Distrib.)

Energy Magazine Input Converter

redundancy is included

Energy Magazine

although not specifically depicted

Ship

Power

\rightarrow Future Combat Ships (1)

Energy Magazine Specific

Topology to be determined

Energy Storage

MV Cellular DC Power Distribution on Future Combat Ships etc.

Source: General Dynamics

LOAD

LOAD

LOAD

LOAD

\rightarrow Future Combat Ships (2)

MV Cellular DC Power Distribution on Future Combat Ships etc.

- "Energy Magazine" as Extension of Electric Power System / Individual Load Power Conditioning
- Bidirectional Power Flow for Advanced Weapon Load Demand
- Extreme Energy and Power Density Requirements

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.

Off-Shore Wind Farms

Medium-Voltage Power Collection and Transmission

Source: M. Prahm / Flickr

- Current 690V Electrical System → Significant Cabling Weight/Costs & Space Requirement Future Local Medium-Frequency Conv. to Medium-Voltage AC or DC

Off-Shore Collector-Grid Concepts \rightarrow

Conventional AC Collector-Grid

- DC/DC-SST Interface of Wind Turbine DC Link to MVDC Collector Grid \rightarrow Lower Losses (1%) & Volume \rightarrow Lower Losses (1%) & Volume
- DC/DC-SST Interface of MVDC Grid to HVDC Transmission

→ Utility-Scale Solar Power Plants

Medium-Voltage Power Collection and Transmission

Source: REUTERS/Stringer

 Globally Installed PV Capacity Forecasted to 2.7 Terawatt by 2030 (IEA)

\rightarrow Future DC Collector Grid

- DC/DC SST for MPPT & Direct Interfacing of PV Strings to MV Collector Grid
- 1.5% Efficiency Gain Compared to Conv. AC Technology

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.

Future Deep Sea Mining & Industrial Plants

- **"Subsea Factories" / Subsea Power Grid** → Long-Distance MV Power Supply from Shore Subsea Mining Machines / ROVs / Pumps / Compressors etc.

Source: SMD - Specialist Machine Developments

Demand for Highly Compact / Efficient / Reliable Systems

ightarrow Future Power Supply of Subsea Systems

Definition of the function of the

\rightarrow Cutting Emissions & Noise in Airports / Harbours

■ Ground Power Supply of Aircraft → APU Turned Off

ETH zürich

■ MV-Level Shore-Side Power to Docked Ships ("Cold-Ironing") → Diesel Aux. Engines Turned Off

SST Concept Implementation

Number of Levels Series/Parallel Cells Degree of Power Conversion Partitioning

Degree of Phase Modularity

Number of Levels Series/Parallel Cells

- Very (!) Large Number of Possible Topologies
- Partitioning of Power Conversion
- Splitting of 3ph. System into Individual Phases
- Splitting of Medium Operating Voltage into Lower Partial Voltages

 Multi-Level/Cell Approaches
- \rightarrow Matrix & DC-Link Topologies
- \rightarrow Phase Modularity

Combining the Basic Concepts I

— Single-Phase AC-DC Conversion / ——— Traction Applications

Cascaded H-Bridges w. Isolated Back End

- Multi-Cell Concept (AC/DC Front End & Soft-Switching Resonant DC//DC Converter)
- Input Series / Output Parallel Connection Self Symmetrizing (!) Highly Modular / Scalable
- Allows for Redundancy
- BOMBARDIER ALSTOM etc. High Power Demonstrators: **ABB**

 $\frac{u_{line}}{10}$ Ulo 1250 100 0 0 -1250 -100 0 0.05 0.1 0.15 0.2 Time [s] [V] [A] u_{S6_ce} 3000 200 l_{Tr} H 2000 1000 -200 0.2 0.6 0.8 0 0.4 1.0

Time [ms]

[V]

[A]

Operating Frequency

DCX - "DC Transformer"

 N_{2}

i₂

 $f_S \approx \text{Resonant Frequency} \rightarrow \text{"Unity Gain"} (U_2/U_1 = N_2/N_1)$ Fixed Voltage Transfer Ratio Independent of Transferred Power (!) Power Flow / Power Direction Self-Adjusting No Controllability / No Need for Control ZCS of All Devices

res: HV & LV side [A]

 $U_{\rm LV}$

 R_{L}

C L

N

 \boldsymbol{i}_1

 $U_{\rm MV}$

• Current Shaping & Isolation \rightarrow Isolation & Current Shaping

Isolated DC/DC Back End

■ Isolated AC/ | AC | Front End

- Typical Multi-Cell SST Topology
- Two-Stage Multi-Cell Concept
- Direct Input Current Control
- Indirect Output Voltage Control
- High Complexity at MV Side

ETH zürich

- Swiss SST (S3T)
- Two-Stage Multi-Cell Concept
 - Indirect Input Current Control
- Direct Output Voltage Control
- Low Complexity on MV Side

43/61

Modular Multilevel Converter

- **Single Transformer Isolation**

- Highly Modular / Scalable Allows for Redundancy Challenging Balancing on Cell DC Voltages

SIEMENS - Marquardt/Glinka (2003)

 $S_N = 630 \text{kV}$ $U_{\text{LV}} = 400 \text{ V}$ $U_{\text{MV}} = 10 \text{kV}$ = 630kVA

• 2-Level Inverter on LV Side

ETH zürich

- HC-DCM-SRC DC//DC Conversion
 Cascaded H-Bridge MV Structure ISOP Topology

45/61

► Single-Cell Structure (SiC)

- $13.8kV \rightarrow 480V$
- Scaled Prototype
 15kV SiC-IGBTs, 1200V SiC MOSFETs

Redundancy Only for Series-Connection of Power Semiconductors (!)

SST Demonstrator Systems

Future Locomotives Smart Grid Applications

1ph. AC/DC Power Electronic Transformer - PET

1.2 MVA 1ph. AC/DC Power Electronic Transformer

Cascaded H-Bridges - 9 Cells
 Resonant LLC DC/DC Converter Stages

Same Overall Volume as Conv. System
 Future Development Targets Cutting Volume in Half

1.2 MVA 1ph. AC/DC Power Electronic Transformer

- Cascaded H-Bridges 9 Cells
 Resonant LLC DC/DC Converter Stages

Efficiency [%] 98 96 94 92 Operating with 9 levels 90 Operating with 8 levels 1000 0 200 400 600 800 Output Power [kW]

- Same Overall Volume as Conv. System
- Future Development Targets Cutting Volume in Half

49/61

SiC-Enabled Solid-State Power Substation

- Das et al. (2011)
 Lipo (2010)
 Weiss (1985 for Traction Appl.)
- Fully Phase Modular System

- Indirect Matrix Converter Modules $(f_1 = f_2)$ MV Δ -Connection (13.8kV_{I-I}, 4 Modules in Series) LV Y-Connection (265V, Modules in Parallel)

- SiC Enabled 20kHz/1MVA "Solid State Power Substation"
 97% Efficiency @ Full Load / 1/3rd Weight / 50% Volume Reduction (Comp. to 60Hz)

SiC-Enabled Solid-State Power Substation

- Das et al. (2011)
- Fully Phase Modular System

- Indirect Matrix Converter Modules $(f_1 = f_2)$ MV Δ -Connection (13.8kV_{I-I}, 4 Modules in Series) LV Y-Connection (265V, Modules in Parallel)

- SiC Enabled 20kHz/1MVA "Solid State Power Substation"
 97% Efficiency @ Full Load / 1/3rd Weight / 50% Volume Reduction (Comp. to 60Hz)

25kW SwiSS-Transformer @ ETH Zurich

- Bidirectional 1- \oplus 3.8 kV_{rms} AC \rightarrow 400V DC Power Conversion Based on 10kV SiC MOSFETs
- Full Soft-Switching

35...75kHz iTCM Input Stage

ETH zürich

48kHz DC-Transformer Output Stage

▶ 3.8kV \rightarrow 7kV ZVS AC/DC Converter

- Full-Bridge iTCM integrated Triang. Current Mode Operation Enables ZVS
- ZVS Requires Change of Sw. Current Direction in Each Sw. Period
- Open-Loop Variation of Sw. Frequency for Const. ZVS Current (35...75kHz)
 Separate Optim. of ZVS and Input Inductor Possible
- No Large Ripple Input Current

Full-Load Measurement (25kW @ 3.8kVrms AC, 7kV DC) - ZVS Over Full AC Cycle (!)

► $7kV \rightarrow 400V DC/DC$ Converter

- MV-Side Half-Bridge
- 48kHz Sw. Frequency, ZVS
- Cooling of Power Semicond. by Floating Heatsinks (Not Shown)
- Creepage Distances Ensured by PCB Slots

Half-Bridge for Cutting Voltage in Half / Lower Switch Count

► $7kV \rightarrow 400V DC/DC$ Converter

- **MF-Transformer Measurement**
- Fully Tested @ 25kW / 7 kV
 Calorimetric Loss Measurement
- 99.64% Efficiency

ETH zürich

Transformer Prototype / Loss Distribution / Efficiency

55/61

Overall Performance

- **Full Soft-Switching**
- 98.1% Overall Efficiency @ 25kW 1.8 kW/dm³ (30W/in³)

Red. of Losses & Volume by Factor of >2 Comp. to Alternative Approaches (!) Significantly Simpler Compared to Multi-Module SST Approach

Remark 1- Φ 2.4 kV_{rms} AC \rightarrow 54V DC F \ominus Fuji Electric

- Published @ IEEE APEC 2017
- N=5 Series-Connected Cells @ MV-Side / Cost Optimum
- **Input Stage** Module \rightarrow Boost PFC Half Contr. Thyr. Rect. / 1.2kV IGBTs & SiC Diodes
- Output Stage Module → 3-Level DC/DC Conv. 600V SJ & 100V MOSFETs

Power Density of 0.4 kW/dm³ (6.6W/in³)
 96% Overall Efficiency @ 25kW

Conclusions

SST Limitations / Concepts Research Areas

SST Applications \rightarrow The Road Ahead

- NOT (!) Weight / Space Limited
- Smart Grid, Stationary Applications

- AC/AC
- **Efficiency Challenge**
- More Eff. Voltage Control by * Tap Changers
- * Series Regulators (Partial Power) Not Compatible w. Existing Infrastr.
- Cost / Robustness / Reliability

- AC/DC
- Efficiency Challenge more Balanced
- "Local" Applic. (Datacenters, DC Distr.)
- Cost / Robustness / Reliability

- DC/DC
- No Other Option (!)
- MV DC Collection Grids (Wind, PV)
- Sw. Frequ. as DOF of Design

- Weight / Space Limited
- Traction Applic. etc.

- DC/DC AC/DC
- AC/AC
- Sw. Frequ. as DOF of Design
- Low Weight/Volume @ High Eff.
- Local Applic. (Load/Source Integr.)

ETH zürich

Remark *"Hybrid"* Transformers

- Combination of Mains-Frequ. Transformer & SST Fractional Power Processing \rightarrow High Efficiency Low Blocking Voltage Requirement Simplified Protection

Current SST Research Status

Huge Multi-Disciplinary Challenges / Opportunities (!) are Still Ahead

Thank You!

Questions

Source: P. Aylward

www.pes.ee.ethz.ch/publications.html

