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Outline

» Digital Transformation
» Power Electronics Performance Trends

» Model-Based Design/Evaluation/Operation
» Conclusions
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Digitization
Digitalization
Digital Transformation

Digital Thread

Digital Twins
“Virtual Environment”

Power Electronics 4.0
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Digital Transformation (1)

m Digitization —> Convert Information Written on Paper into Digital Format
m Digitalization —> Compiled Digitized Information Introduced in Standard Processes

Supply Chain

The “Brilliant” Factory Network

caback \oo?”

fe

Produ"-f‘on

Virtual
Manufacturing

Virtual Product
Design

Service/Repair

Shop

P Digital Transformation —> Digitized Data & Digitalized Applications Used for “Virtualization”
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Digital Transformation (2)

3/31 —

m Digital Thread = Cont. Bidir. Data Path Linking Simulation Model/Manufacturing/Testing etc.
—> Originally Developed by Lockheed Martin for 3D-CAD Data > CNC Machines

m Digital Twin

—> Phys.-Based Dig. Mirror Image of Planned & Manufact. Product w. Bidir. Data Link

- Holds Data from Design, Prototype, Finished Product, Operation etc.
- Real-Time Assessment of System’s Curr. & Future Abilities

Operational

History
Maintenance

Physical Asset Hiskon:

Real Time
ar Operational Data

FMEA™
CAD Model

FEA Model
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Physics Based Models
+ Statistical Models
+ Machine Learning
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» “End-to-End Model-Based” > Specific./Design/Manufact./Test/Operation/Monitoring/ Recycling
» Targeting Zero Distance of Digital (Virtual) Representation and Physical Realization
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Digital Transformation (3)

m Digital Thread | Digital Twin -> “Weaving” Real/Physical & Virtual World Together
m “Digital Birth Certificate” —> Each Part/Machine to Keep Track Through Whole Lifetime
m Fully Digital Product Lifecycle - “Digital Tapestry” (Lockheed Martin)

Digital Twin Digital Twin
Product Production

Digital Twin
Performance

Insights from performance with MindSphere

w <Veriﬁcation < Validation

\ Automation
Spééii’lcaﬁon> Commissioning>

a a

Virtual Virtual l?jeal_ Ideal Real
product production production EEICEY product |

Continuous improvement

Collaboration Platform
Source: SIEMENS

» Future Power Electronics Models/Design —> To be Embedded in this Virtual Environment!
» Smart Components Integr. Sensors Connect to Dig. Twin > Design Improv. / Prev. Maintenance etc.
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Laboratory

Power Electronics — Technology Push

m WBG Semiconductor Technology - Higher Efficiency, Lower Complexity

m Microelectronics

typical Cell R, x A @25°C

e S Limit
= = Si Compensation Limit (@16um Pitch)
- Si Compensation Limit (@4pm Pitch)

— ~-—Si Compensation Limit (@1pm Pitch)
| ——4H sic Limit

|| =—GaN Limit

| ——IGBT Limit (Nakagawa)

i CoolMOS C3/C5

SFET3HV

SFET4/5 w/o Substr

IGBT3/4/RC

SIiC JFET IFX

GaN HEMT published

vyeenenm

- + Advanced Packaging (!)

—> More Computing Power

5/31

transistors

Pentium® 4 Processor
Pantium® |Il Processor
MOORE'S LAW
Pentium® Il Processor
Pentiumi Processor

486™ DX Processor

386™ Processor
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Power Electronics Technology S-Curve

m Power Electronics 4.0

/
i /
o “Passives” I'
Adv. Packaging /
Automated Design of Converters &
44 ”
Systems” /
Interdisciplinarity 4.0
WBG
» Super-Junct. Techn. / WBG
P » Di i.tal/Povyer /
Modeling & Simulation 5
Performance Replacement » Power MQSFETS & IGBTS
+ . 3 (Disruptive) Microelectronics
5 £ ¢ SRRy » Circuit Topologies
E F Z }Modlcxlationl Concepts 2.0
\ | . 5ng§ /DDio- des ontrol Concepts
olid-State Devices _/
™~ Existing 1.0
Technology
» Effort/Time m * 2025

2015
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Power Electronics Design

Requirements

Design Challenges

Design Abstraction

Multi-0bj. Optimiz. (State-of-the-Art)
Results

pels
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Future Development (1)

m Megatrends - Renewable Energy / Energy Saving / E-Mobility / “SMART XXX"
m Power Electronics will Massively Spread in Applications

Technology Push

* WBG Semiconductors
+ Digital Control
« Adv. Design & Packaging

+ Standardized
Performance : \ /JL_ Iy * 3-D Integrated
i /_;_'_Z'_ ____ » Reliable
- I + Cost Optimized
'/-/-—-—-—l -------- * Plug & Play

Environmentally Friendly

|

|

: Market Pull

I + Smart Grids

: » Green / Smart Buildings
| + HEV & E-Mobility

|

» Time

2010 2025

More Application Specific Solutions

Cost Optimization @ Given Performance Level for Standard Solutions

More Specific Requirements — High Peak/Avg. Ratio, Wide Volt. Range etc.
Design / Optimize / Verify (Allin Simulation) - Faster / Cheaper / Better

ETH:zurich pis _
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Future “Big-Bang” Disruptions

m “Catastrophic” Success of Disruptive New (Digital) Technologies
m  No Bell-Curve Technology Adoption / Technology S-Curve
m “Shark Fin“-Model

8/31 —

BIG BANG MARKET Big Bang Market Adoption
SEGMENTS
T Source: www.verschuerent.wordpress.com
February 2015
Trial
Users
ot e
§ Q)
ay
~ -\©
See also:
Big Bang Disruption —
Strategy in the Age of
Devastating Innovation,
# ——-—_-..— % —— ———— 1 L. Downes and P. Nunes
Innovators  Early Adopters  Early Majority Late Majority Laggards

L

ROGERS'S MARKET SEGMENTS

|

» Consequence: Market Immediately & Be Ready to Scale Up — and Exit — Swiftly (!)

ETH:zurich
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Required Power Electronics
Performance Improvements

Environmental Impact... [kge. /kW]
[kgc, /kW]
[kgy /kW]
[em?; /kW]

\
Weight / Volume

State-of-the-Art

Losses

Failure Rate

m Performance Indices
Power Density [kW/dm?] Future
Power per Unit Weigl}; [kW/kg] > Time-to-
Relative Costs [kW/$] .
Relative Losses [%] Market
Failure Rate  [h']
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Multi-Objective Design Challenge (1)

m Counteracting Effects of Key Design Parameters
m Mutual Coupling of Performance Indices - Trade-Offs

Efficiency

Converter

Complexity Switching

Frequency

Initial Costs
Life Cycle Costs

Reliability
Redundancy

/ Size

Operat. Temp.

Level of
Integration

Derating,
Redundancy

Costs

» Large Number of Degrees of Freedom / Multi-Dimensional Design Space
» Full Utilization of Design Space only Guaranteed by Multi-Objective Optimization

ETH:zurich pis
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Multi-Objective Design Challenge (1)

m Counteracting Effects of Key Design Parameters
m Mutual Coupling of Performance Indices - Trade-Offs

» Large Number of Degrees of Freedom / Multi-Dimensional Design Space
» Full Utilization of Design Space only Guaranteed by Multi-Objective Optimization

ETH:zurich pis —
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Multi-Objective Design Challenge (2)

m Specific Performance
Profiles / Trade-Offs

Dependent on Application

Functional
Performance

Reliability Efficiency

Domestic
Applications

Functional
Performance

Cost Size
Reliability Efficiency
Industry
Applications
Functional
Performance
80

I
Cost Size
Reliability Efficiency
Laboratory
Applications

12/31 —

Functional
Performance

Reliability Efficiency

Information &
Communication Industry

Functional
Performance

P
Reliability Efficiency

Aerospace
Applications
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Remark: Visualization of Multiple Performances ;-)

m Spider Charts, etc.

m Chernoff-Faces O O O O
AARONSON,L.H. ALEXANDER,J.M. ARMENTANO,A.J. BERDON,R.I.
. . . -
|
BRACKEN,J.J. BURNS,E.B. CALLAHAN,R.J. COHEN,S.S.
DALY J.J. DANNEHY,J.F. DEAN,H.H. DEVITAH.J.

» H. Chernoff (Stanford): “The Use of Faces to Represent Points in K-Dimensional Space Graphically”

ETH:zurich pis _




“1C I Power Electronic Systems
1= Laboratory

‘ ‘ Abstraction of Converter Design
Design Space / Performance Space
Pareto Front

Sensitivities / Trade-0ffs

Multi-Objective
Optlmlzatwn

ETH:zurich pis
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Abstraction of Power Converter Design

Performance Space

Efficiency
Power Density

* Costs
Performance Space : Reliabilty / ¢ Evaluation Formulas

ete f(x,k) “«—° Lifetime Models

Y
©

——————————————————————————————————————— Costs ‘ e Cost Models
: System | e clc.
Des.lgn Space * Phase-Shift DC/DC Conv,
¢ Resonant DC/DC Conv. L
* DC Link AC/AC Conv. * Specifications
* Mairix AC/AC Conv. * Operation Limits
. elc. * Converter Topology
¢ Modulation Scheme
1 m -, Control Concept
Comp(ments : . Upermion Mode
+ Power Semiconductor ¢ Operating Frequ.
« Interconnections ® elc.
¢ Inductors, Transf.
* Capacitors
+ Control Circuit [ ] Il e Doping Profiles
¢ clo m * Geometric Properties
! -, Winding Arrangements
Materials * Magnetic Core Geometries
® efc.

* Semiconductor Mat.
* Conductor Mat.

* Magnetic Mat.

* Dielectric Mat ,

. elc,

» Mapping of “Design Space” into System “Performance Space”

ETH:zurich pis _
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Mathematical Modeling
of the Converter Design

Specifications
V], V(}, .P(), At’(}, CISPR 11/22 A,B

l

Converter Topology
Modulation Scheme

l

Electric Power Circuit Model

Component Values, fp

15/31 —

I ims I s I Teme /Lavg B (1) /i (D)
l T3 1 ¢ 1
Capacitor Transformer / Inductor Semiconductor | CM Noise ‘ | DM Noise ‘
Type « Windings Geom. Type Model Model

* Wire Type lAE'fu 1/7:51

* Core Geom. - —

* Core Type Off-line Optimized DM/CM

l Loss Model Filter Topology
Cﬂ)-wlcl'lv' ﬁ lLU.U/L( M
Loss Model ‘ Reluctance Model | 7 Filter Filter Inductor
Capacitor + Geometry
l DL Lo | Thermal Model Type * Material
Min. Loss Model i l
Losses « Windings P
B<E « Core " ‘ Loss Model ‘ Loss Model |
=Dy
T<hw|  frerm | Off-line
V< Vit Optimized .
’ Thermal Model | Heat Sink Min.
Vol
Transformer/ Heat Semic
Capacitor | Capacitor Inductor Sink }_osseil EMI Filter | EMI Filter EMI Filter
Volume Losses Volume Volume e Cap. Vol |Cap. Losses Ind. Losses

Minimum Losses or Volume

EMI Filter
Ind. Vol.

Summation of Component Volumes and Losses

}_

|

Total Converter Volume / Losses

» Multi-Objective Optimization — Guarantees Best Utilization of All Degrees of Freedom (')

ETH:zurich
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Multi-Objective Optimization (1)

m Ensures Optimal Mapping of the “Design Space” into the “Performance Space”
m Identifies Absolute Performance Limits - Pareto Front / Surface

"
A
N~ P
_1 on !
S’?P ap P ”‘.’

>

Design Space Performance Space

» Clarifies Sensitivity Ap | Ak to Improvements of Technologies
» Trade-off Analysis

ETH:zurich pis _
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Determination of the 77-p-Pareto Front (a)

Comp.-Level Degrees of Freedom of the Design

Core Geometly Material

17/31 —

Single / Multiple Airgaps

Sol19d //Litz W1J:e, Foils i i
Winding Topology

Natural / Forced Conv. Cooling l
Hard-/Soft-Switching M
Si / SiC

et R

1 jj! fl.u

i'='__’ D R,

etc.

System-Level Degrees of Freedom

Circuit Topology

etc.

Only /7-p-Pareto Front Allows Comprehensive
Comparison of Converter Concepts (!)

Modulation Scheme . 3
Switching Frequ. ' D%vrfgil‘;y
etc.

n-p-Pareto-Front

n o Limit

-

ETH:zurich

—> P
Plim
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Determination of the 77-p-Pareto Front (b)

m Example: Consider Only f, as Design Parameter

m Only the Consideration of
All Possible Designs / Degrees
of Freedom Clarifies the
Absolute #-p-Performance

Limit

X f,=100kHz

]k

] R

ETH:zurich

Efficiency [%]

100

“Pareto Front”

Absolute #-p-Limit

Inductor

18/31 —

Output
Capacitor

98 -

Heat sink &
96 ' :
Output Cap. :
94 - — . /
n-p-Limit _~/ Heat sink
for Specific " '
Design -
92 - !
1
/
. /
90 T 1 L T
0 2 4 6

Power Density [kW/dm?]

pels
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Multi-Objective Optimization (2)

m Design Space Diversity

m Equal Performance for Largely Different Sets of Design Parameters

xz pi
A A
Ty —
B\
(k) )
>

[

Design Space

Performance Space

» E.g. Mutual Compensation of Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
» Allows Optimization for Further Performance Index (e.g. Costs)

ETH:zurich
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Converter Performance Evaluation
Based on n-p-o-Pareto Surface

m Definition of a Power Electronics “Technology Node” = (n*p*,o* f*)
m  Maximum o [kW/$], Related Efficiency & Power Density

n
~100%
np,o
no-0pt /8L oon, Piet A
5 ° -p-c-Pareto
/d ’”Surface
\ AN
\\i: ~~~~~~~~ np-Opt.
VAR o TRl T
ap-Opt.

Ip

40

» Specifying Only a Single Performance Index is of No Value (!)
» Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)

ETH:zurich pis _
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Converter Performance Evaluation
Based on n-p-o-Pareto Surface

m Definition of a Power Electronics “Technology Node” = (n*p*,o* f*)
m  Maximum o [kW/$], Related Efficiency & Power Density

n
~100%
np,o
na-Opt. L oo, _ A
v ° -p-c-Pareto
/d 4 pSurface
A AN
N
o np-Opt.
A T i 1R
ap-Opt.

» Specifying Only a Single Performance Index is of No Value (!)
» Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)

ETH:zurich pis _
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Remark: Comparison to “Moores Law”

m “Moores Law” Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!)
m  Complexity for Min. Comp. Costs Increases approx. by Factor of 2 / Year

Economy of L
ower
Scale — > < vield
108
1962 >2015: Smaller
% Transistors but Not
g 10% \_/ ‘ any more Cheaper
g
E
S
g 108
g
=
g
g 102
s
2
£
c

1 10 102 108 104 108 fP*

Number of Components Per Integrated Circuit

» Definition of “n*p* 0% f,*~Node” Must Consider Conv. Type / Operating Range etc. (!)

ETH:zrich ﬁ A A
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Example

Two-Level vs. Three-Level
Dual Active Bridge 5

pels
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Wide Input Voltage Range
Isolated DC/DC Converter

Structure of “Smart Home” DC Microgrid Universal DC/DC Converter
\ \ 4
% E
§§ 4 E:5kW@nmax>98%
8 Idcl max 22A
’ O—p D C
2 + +
EE Vi Vaca
5z = To—— 3
e & [100,700] V | 750V
2 DC Loads * DC Bus
m Universal Isolated DC/DC Converter m Advantages
— Bidirectional Power Flow — Reduced System Complexity
— Galvanic Isolation — Lower Overall Development Costs
— Wide Voltage Range — Economy of Scale

High Partial Load Efficiency

ETH:zurich pis _




Power Electronic Systems 24/31 —
|-I E 5 Laboratory ? /

Comparative Evaluation of Converter Topologies

< Lieo
i SolJE? SA'{:? iy Lo Tr Ly, e SJE} SJ-JE‘} % |
- Vdc?g: 1-!:1' . l. l "T_) = Vi -
0 7;“, t Sj"‘ SJ"‘ - n:l gJH SOJH Cf2 0 Y;W t
o d q} 4 q’i - :q} ; q} o

m Advanced 5-Level Dual Active Bridge (5L-DAB)

Idcl
o> I
L skE Sk i
: H L ol S l—m +
ﬁ Tacl L'C’ TI' L'm Tae2 ) : IDIJKI—-!
l‘:l(?l 2 l S S + > ] o - + .l‘;u
VZlcl ?& JS_ =0 27 [Uaer l l Uac2 _ ‘/c:lc‘Z
0 It — EH'{?;}- ~ — Chy 0 Lt
J_ n:l SngH:q%ngJHE% )
_o_

LT 8

ETH:zlrich ﬁ _
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Optimization Results - Pareto Surfaces

25/31

99 . < 99
m 3-Level Dual Active Bridge - ) =
m 5-Level Dual Active Bridge I — s e ol
S [ §

=,

o
=3
©
=

3[‘ Ua\’g ~FPhox PF

Average Efficiency ave (%)
Average Efficiency 7avg

(=}

(@)

[}
Ut

: 3L Op = Phox

[S]
<

—_
o

o0 75 100 125

Switching Frequency f,, (kllz)

Ut

Watts per Euro ap (W /€)
—
Ut

1 2 3 41 5 6
Power Density ppo (kW /dm?)

ETHziirich a

96 |
[ , N , ) N 9' , , P
PrTST3 1 s 6 25 10 15 20
Power Density p,o, (KW /dm?) Watts per Euro op (W/€)
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Multi-Objective Optimization

m Offers Incredible Design Insight - Quantifies Trade-0ffs / Technology Sensitivities (!)

m Extends Theory of Components - “Theory of Systems”
m Reduces Time-to-Market - Cuts Design Time from Weeks to Hours
2015

Hardware 80% —
Potohing gy | E—

20xx

» Increasingly Used in Industry (BOSCH, Infineon, etc.)
» Could be Extended to Platform Solutions (Def. as Side Conditions) & Systems & Life Cycle Analysis

— ELECTRONICS SOCIETY ——
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Power Electronics
Design & Testing 4.0

Assisted
Augmented
Autonomous

pels
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Roadmap to Power Electronics Design 4.0

m End-to-End Horizon of Modeling & Simulation (Specification > Recycling)

Autonomous Design - Design 4.0

- Independent Generation of
Full Designs & Graphical
Representation of Performances/
Sensitivities/Diversities for Final

Augmented Design (Expert) User Judgement etc.

- Suggestion of Design
Details to the User Based on Assisted Design
Previous Designs,

incl. Comprehensive
Performance Indication etc.
in Graphical Form

- Support of the User with
Abstracted Database of
Former Design & Appl.
Experience Generated b
Machine Learning in Order to
Reduce Time for
Parametrization, Def. of
Limits etc.

State-of-the-Art —

- Models and Simulation/
Optimization Structure
Defined by the User

- Limited Interactive Features

- Fragmented / High License Costs

» Multi-Obj. Design for Cost / Volume Target / Manufacturing / Testing / Reliability / Recycling
» The Only Way to Survive in a World of Exponentially Increasing Knowledge Bases / # of Papers (!)

ETH:zurich

IEEE POWER
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» Convergence of Measurement & Simulation - Augmented Reality Oscilloscope
» Measured Signals & SimulatedInner Voltages/Currents/Temp. Displayed Simultaneously
» Automatic Tuning of Simulation Parameter Models for Best Fit of Simulated/Measured Waveforms

ETH:zurich pis _




“1C I Power Electronic Systems
I'— Laboratory

NEW

Conclusions ¢ PARADIGM » >
AHEAD
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“Energy” Electronics

m Design Considering Converters as “Integrated Circuits” (PEBBs)
m Extend Analysis to Converter Clusters / Power Supply Chains / etc.

— “Converter” > “Systems” (Microgrid) or “Hybrid Systems” (Automation / Aircraft)
— “Time” - “Integral over Time”
— “Power” - “Energy”

o) > (It)p(t)dt

Power Conversion > Energy Management / Distribution
Converter Analysis > System Analysis (incl. Interactions Conv. / Conv. or Load or Mains)
Converter Stability > System Stability (Autonom. Cntrl of Distributed Converters)

9

9

Cap. Filtering
Costs / Efficiency
etc.

Energy Storage & Demand Side Management
Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency

ETH:zurich pis _
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New Power Electronics Systems

Performance Figures/Trends

v
Supply Chain
& PPYY v : State-of-the-Art
Mission Manufacturing &
Recycling Effort
Energy Loss Y ,g 1 Floorspace
m Complete Set of Requirement

New Performance Indices

Total Cost of Fallure Rate
— Power Density [kW/m?] Owner Shlp
— Environm. Impact [kWs/kW]
— TCO [$/kW] Future
— Mission Efficiency [%]
— Failure Rate [h]
ETHziirich W ——
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» Conclusions

Challenges in Modeling & Simulation

Improvement & Comb. of Analytic, Equiv. Circuit, FEM, Hybrid Red. Order Models

Models in Certain Areas Largely Missing (Costs, EMI, Reliability, Manufacturability, etc.)
Strategies for Hierarchical Structuring of Modeling (Doping Profile > Mission Profile)
Strategies for Comput. Efficient Design Space Exploration & Multi-0bj. Simulation
Sensitivity of Performance Prediction to Model Inaccuracies Largely Unknown

Design Space Diversity and Performance Sensitivities Not Utilized

Challenges of Company-Wide Introduction

No Readily Available Software

Company-Wide Model Updates & Software Updates
Complete Restructuring of Engineering Departments
License Costs

etc.

...but, “The Train Has Left the Station” (')

pels
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m End
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Thank You !
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