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Autonomous 
Deep Drilling Robot

120kW  Down-Hole Electric
Drilling Actuator

5kVDC Power Supply 
5km      Maximum Supply Length
250°C   Max. Operating Temp.

NASA –
Honeybee Robotics
Inchworm Deep Surface Platform

Power & Data
Transmission

via Highly 
Flexible

Composite 
Coiled Tube

15…30°C/km

48/56



03/2006

Autonomous 
Deep Drilling Robot

Ultra-Compact 
Drilling Actuator 
Power Electronics

Input Stage 
5kVDC → 800VDC
20…50 kHz

Actuator
Modules
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Autonomous 
Deep Drilling Robot

6 GHZ.VA

Switching Frequency 
Power Product for
Ultra Compact System
Realization
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Highly Dynamic 
High-Voltage Active Filter

Si-Multi-Level Converter
Replaced by SiC-2-Level System
With Factor 10 Higher 
Switching Frequency
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Technology Gaps

• High Temperature Packaging
• High Temperature Passives (Capacitors, Magnetics)
• High Temperature Control Circuits
• High Temperature Sensors

Advanced Cooling Systems

• High Frequency / High Current Interconnection Technology
• High dv/dt Gate Drive (Optically Controlled Switch)
• High Frequency High Voltage Passives 
• Advanced EMI Filtering / Parasitics Cancellation
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Oriented to High Power Devices  
< 2400V / 100…500A
< 200W Device Dissipations  

Planar Power Polymer 
Packaging (P4TM)

Wire-bonded Die on Ceramic Substrate 
Replaced with Planar Polymer-based 
Interconnect  Structure 

Direct High-conductivity Cooling Path
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• Reduces Wire Bond Resistance by Factor 100
• Significantly Lower Switching Overvoltages
• Reduced Switching Losses
• No Ringing
• Reduces EMI Radiation
• Enables Topside Cooling
• No Mechanical Stress of Wire Boding 
• Reduces CTE Wire Bond Stress of Chip Pads

Planar Power Polymer 
Packaging (P4TM)
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Future

Higher Temperatures
Higher Powers

Higher Frequencies
Higher Efficiencies
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