SiC User Forum

Use of SiC Components in Power Electronic Systems

Johann W. Kolar

ETH Zurich Power Electronic Systems Laboratory ETH Zentrum, ETL H22 Physikstrasse 3 CH-8092 Zurich kolar@lem.ee.ethz.ch

Outline

- SiC Si Material Properties
 Reported SiC Device Performance
 Selected Application Areas
 SiC Systems Research at ETHZ

- Technology GapsOutlook

SiC Power Semiconductor Devices

Challenges

Cross section

Top view

SiC Wafer Defects -Micropipes and Screw Dislocation Causing Low Processing Yield <5/cm² Ultra-Low MP Density

<3/cm² Required for 1200V/100A Devices

2002 SiC Wafer Production Capacity 94% US Share

ETH

SiC / Si Material Properties Comparison

Wide Bandgap \rightarrow High Operating TemperatureHigh Critical Field \rightarrow Low On-ResistanceHigh v_{sat} \rightarrow High FrequencyHigh Therm. Cond. \rightarrow High Power/ Temperature

C.M. Zetterling/KTH

at 300 K	Si	GaAs	4H/6H-SiC	GaN
Eg (eV)	1.12	1.4	3.0-3.2	3.4
Ec (MV/cm)	0.25	0.3	2.2- 2.5	3
μn (cm²/Vs)	1350	8500	100-1000	1000
٤r	11.9	13	10	9.5
Vsat (cm/s)	1x10 ⁷	1x10 ⁷	2x10 ⁷	3x10 ⁷
λ (W/cmK)	1.5	0.5	3 - 5	1.3

Biggest Device Performance Difference Resulting from 10 times Higher Critical Field *E*_c

Influence of *E_c* on Device Performance

Consider pn-Junction

Design for High Blocking Voltage / Low On-Resistance Proper Selection of N_p and $W \rightarrow E=0$ for x=W

Influence of *E_c* on Device Performance

High Voltage (Unipolar) Devices

SiC Power Switching Device Properties

High Frequency Devices

$\tau = \frac{W}{2v}$	$C \propto \varepsilon_r$
sar	C.M. Zetterling/KTH

Transport through Depleted Region Causes Delay Time

 $W_{SiC} = 1/10 W_{Si}$ $v_{sat SiC} = 3 v_{sat Si}$

at 300 K	Si	GaAs	4H/6H-SiC	GaN
Ec (MV/cm)	0.25	0.3	2.2-2.5	3
Er	11.9	13	10	9.5
Vsat (cm/s)	1x10 ⁷	1x10 ⁷	2x10 ⁷	3x10 ⁷

SiC Power Switching Device Properties

High Temperature Devices

SiC Power Switching Device Properties

High Temperature Devices

SiC Rectifier Diode Probe-Tested at 600°C

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SiC Power Switching Device Properties

High Power Devices

Junction Temperature Rise Proportional to Power and Thermal Resistance

 $W_{sic} = 1/10 W_{si}$ Low Thermal Resistance

High Device Temperature Requires Advanced Packaging / Cooling

$$\Delta T = R_{TH} P = \frac{l}{\lambda A} P$$

$$P_{SiC} \approx 10 \times P_{Si}$$

$$\lambda_{SiC} \approx 2 - 3 \times \lambda_{Si}$$

$$\Delta T_{SiC} \approx 5 \times \Delta T_{Si}$$

iC older

eatsink

C.M. Zetterling/KTH

Summary of SiC Power Switching Device Properties

High Blocking Capability High Switching Frequency High Operating Temperature

Basic Types of SiC Power Switching Devices

Progress in Blocking Voltage of SiC Power MOSFETs

03/2006

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Comparison of Unipolar and Bipolar SiC Power Switching Devices

20kV N-Channel MOSFET **P-Channel IGBT** 300W/cm² Package Limit **N-Channel IGBT** 225 C 27 C 100 Significantly Higher Current of **IGBTs at Package Limit** 300 W/cm² 80 Current (A/cm²) p-IGBT 60 Q Gate Q Gate Source 777 t n-IGBT 40 27 C P-Well Implan P-Well In N- Blocking 20 0 N- Blocking Layer (150 - 200 µm) Layer (150 - 200 µm) n-MOSFET N+ Substrate P+ Substrate 0 V_A ≥ 15 kV V_A ≥ 15 kV 15 0 5 10 Voltage (V) ETH 14/56

03/2006

SiC Power Switching Devices Performance Envelope

SiC Power Semiconductor Devices

Positive Temp. Coefficient of V_F No Reverse Recovery Current T=125°C, V_{DC}=400 V I_F=6 A, di/dt=200 A/µs I_D SICED A Siemens Company 0 **SiC Schottky Diodes** 600V 35A 1200V 25A 1700V 40A **SiC MPS Diodes** > 2kV 15A **SiC Bipolar Diodes** > 4kV 12A - SiC Schottky diode: SDB06S60 — Si pin double diode (2*300 V) SiC J-FETs 1200V 5A/10A 1800V 3A/8A - Ultrafast Si pin diode 2A/div 30ns/div

600V SiC Schottky Diode

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

ETH

03/2006

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

High-Voltage High-Frequency SiC Devices

Defense Advanced Research Project Agency Hefner /NIST

Future Target 15kV / 20kHz, T_i=200°C PiN Diode, MOSFET, IGBT

- DARPA Wide Bandgap (WBG) High Power Electronics (HPE) Program 15kV Class Devices for 2.5MVA Solid State Navy Ship Substations
- EPRI Intelligent Universal Transformer Program Advanced Distribution Automation and Power Quality Enhancement 13.8kV – 120/240kV, 10...50kVA

SiC Power Semiconductor Application Areas

Low-Voltage

Mature Technology Applications with High Potential Volumes

SMPS

- Motor Integrated Drives (100kHz)
- Hybrid Cars
- More Electric Aircraft

High-Voltage

Rapid Development

- Utility / Power Distribution
- Military Research Platforms

Drive Systems

60% of Electric Energy Utilized in Germany consumed by Drives

5% Employing Electronic Speed Control35% Possible Share / 40% Energy Saving Potential (16TWh)

400TWh Drives Energy Consumption in the EU 60% Energy Saving Potential

Drive Systems

Multi-Level Converter Topologies

High-Voltage High-Frequency Replacing 2-Level Systems Converters

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Three-Phase PWM Inverter

8 mm x 8 mm Chip Size 6 mm x 6mm PiN diode

Metal Can Package Utilizing New High-Temperature Resin (up to 300°C) for Dielectric Insulation

110kVA / Switching Frequency 2kHz 4.5kV/100A SiC Gate-Turn-Off Thyristors 2us Turn-Off Time No Snubber Inverter Phase-Leg as demonstrated by KEPCO (Kansai Electric Power Company,Osaka/Japan) and CREE in Feb. 2006

SiC-J-FET PWM Inverter Stage

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

03/2006

Comparative Evaluation of Si-IGBT/SiC Diode BBC and IMC

Isolated Half-Bridge Packages Integrating Si-IGBTs and SiC Schottky Diodes

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Hybrid Car

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Future Motor-Integrated Power Electronics

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

Technology Gaps Power Electronics Electric Machines

System Efficiency to be increased to 95% in 2015, other Parameters as for 2010

Status based on PNGV (Partnership for New Generation of Vehicles) Automotive IPEM and Automotive Electric Motor Drive Program PNGV Coolant Temp.: 70°C, Table shows Estimated Values for 105°C

Power Electronics (inverter/controller) ^a								
	2010 Target	2003 Status	Gap					
Specific power at peak load (kW/kg)	>12	11	1					
Volumetric power density (kW/l)	>12	11.5	0.5					
Cost /kW peak	<\$5	\$6	\$1					
Efficiency, %	97	97	0					
Coolant inlet temperature, °C	105	70	35					
Lifetime, years	15	15	0					
Tractic	on Motor ^b							
	2010 Target	2003 Status	Gap					
Specific power at peak load (kW/kg)	>1.3	1.0	0.3					
Volumetric power density (kW/l)	>5	3.5	1.5					
Cost/kW peak	<\$7	\$15	\$8					
Efficiency, %	>93 at 10% to	>90 at 35%	10-34%					
	100% max.	to 100%	max. speed					
	speed	max. speed						
Voltage, V	325	325	0					
Maximum current, A rms	400	415	15					
Peak power for 18 seconds, kW	55	55	0					
Continuous power, 8.5-85 mph	30 kW	30 kW,	77-85 mph					
		8.5-77 mph						
Propulsion System (Inverter & Motor) ^c								
	2010 Target	2003 Status	Gap					
Specific power at peak load (kW/kg)	>1.2	0.95	0.25					
Volumetric power density (kW/l)	>3.5	2.5	0.9					
Cost /kW peak	<\$12	\$21	\$9					
Efficiency, %	>90% at 10%	90 at 35% to	10-34%					
	to 100% max.	100% max.	max. speed					
	speed	speed						
Lifetime, years	15	15	0					

a) 2003 status based upon recent progress report from Semikron.

b) 2003 status based upon progress review by Delphi on June 13, 2003.

c) Approximated by adding inverter plus motor.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ЕТН

More Electric Aircraft

Air Traffic Growth 4.7%/a

Variable Frequency Power Generation 270V_{DC} Power Distribution Replacement of Hydraulic by Electric System

More Electric Fighter Aircraft Integrated Power Unit

Research Programs Reduced Size and Mass Power Electronic Systems High Temperature Electronics

Near Term (3 – 5 years) 250...300°C max Component Temp. Eliminates need for Active Cooling

Far Term (5 – 9 years) 300...350°C max. Supports 'High Speed' Aircraft

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

More Electric Aircraft

Three-Phase AC/DC Power Conversion with Low Effects on the Aircraft Mains

Unidirectional Buck+Boost Converter

Unidirectional Three-Level Boost Converter

Three-Phase PMW Rectifier

Switching Loss Measurements

Turn-on Turn-off

Three-Phase PMW Rectifier Performance

Partitioning of the Converter Volume

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Novel Three-Phase PMW Rectifier Power Module

Free-Wheeling Diodes 2 x 10A SiC Power Transistor CoolMOS 600V/45A

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

ETH Zurich SiC Power Electronics Research

Three-Phase 10k/l PWM Rectifier Three-Phase All-SiC Matrix Three-Phase All-SiC PWM Inverter Autonomous Drilling Robot High-Frequency Active Filter

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Autonomous Deep Drilling Robot

Power Electronic Systems Laboratory

Highly Dynamic High-Voltage Active Filter

Si-Multi-Level Converter Replaced by SiC-2-Level System With Factor 10 Higher Switching Frequency

+3kV

03/2006

Technology Gaps

- High Temperature Packaging
- High Temperature Passives (Capacitors, Magnetics)
- High Temperature Control Circuits
- High Temperature Sensors

Advanced Cooling Systems

- High Frequency / High Current Interconnection Technology
- High dv/dt Gate Drive (Optically Controlled Switch)
- High Fréquency High Voltage Passives
- Advanced EMI Filtering / Parasitics Cancellation

Power Electronic Systems Laboratory

Planar Power Polymer Packaging (P4TM)

Oriented to High Power Devices < 2400V / 100...500A < 200W Device Dissipations

Wire-bonded Die on Ceramic Substrate Replaced with Planar Polymer-based Interconnect Structure

Direct High-conductivity Cooling Path

Planar Power Polymer Packaging (P4[™])

CROSS SECTION OF A POWER OVERLAY MODULE

DOUBLE-SIDED COOLING OF A POWER OVERLAY MODULE

- Reduces Wire Bond Resistance by Factor 100
- Significantly Lower Switching Overvoltages
 Reduced Switching Losses
- No Ringing •
- **Reduces EMI Radiation** •
- ٠
- Enables Topside Cooling No Mechanical Stress of Wire Boding •
- Reduces CTE Wire Bond Stress of Chip Pads

ETH

Power Electronic Systems Laboratory

Future

Higher Temperatures Higher Powers Higher Frequencies Higher Efficiencies

Power Electronic Systems Laboratory

Future

HOT HARD FAST

