

Performance Trends and Limitations of Electronic EEnergy Processing Systems

J. W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Basic Structure of Electronic Power Processing Systems

—— Power Electronics Systems ——

Basic Electronic Power Processing System

Basic Electronic Power Processing System

Highest Efficiency Highest Dynamics Highest Compactness Highest Compatibility Highest Reliability

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Outline

- ETH Zurich
- **Power Electronic Systems Laboratory (PES)**
- Future Importance of EEnergy / Power Electronics (PE)
 Inspiring Concepts of Future Renewable Energy Systems
 ETH MEGA Cube Project

- General Applications of PE / Efficiency Challenge
 Pareto-Optimal PE Converter Design Approach
- **Potential Future Extensions of PE Applications Areas** Summary

Zurich Profile

ETHZ Zurich University of Zurich 8 Univ. of Appl. Science

14'500 Students 20'000 Students 7'000 Students

1Lake2Rivers1'100Fresh H20 Fount.1'946Rest. & Bars57Museums32Theaters2Soccer Clubs10Min. to Airport100km to Snowy Alps

Zurich 370'000 Aggl. 1'102'000

21	Nobel Prizes
350	Professors
3600	T&R Staff
2	Campuses
136	Labs
21%	Int. Students
90	Nationalities
36	Languages
150 th	Anniv. in 2005

Departments of ETH Zurich

AGRL **Agriculture and Food Sciences** Architecture ARCH BAUG **Civil, Environmental and Geomatics Eng.** BIOL Biology BSSE **Biosystems Chemistry and Applied Biosciences** CHAB **Earth Sciences ERDW** GESS Humanities, Social and Political Sciences **Computer Science** INFK **Information Technology and Electrical Eng.** ITET MATH **Mathematics** MATL **Materials Science Mechanical and Process Engineering** MAVT Management, Technology and Economy MTEC **Physics** PHYS **Environmental Sciences UWIS**

Students ETH in total

11′300	Diploma-Students
3'200	Doctoral Students

Power Electronics Systems Laboratory

Organization
—— Spin-off Network ——

D-ITET Power Electronic Systems Laboratory

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

PES Spin-Off Network

PES Selected Research Results

Ultra Compact Systems Ultra Efficient Systems — Ultra High Speed Systems ——

Deep Green IT Power Supplies

Supercomputing Targets 95% Efficiency from 3-Φ Mains Input to POL Converter Output

164TWh/year (110 Mio Tons of CO₂) Global Telecom Industry Energy Consumption

Communications Power Systems 12-V Intermediate Bus Architecture

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Single-Phase PFC Rectifier

Solar Impulse

Attempt to Fly a Solar-Powered Airplane Around the World

Requires Cabin Air Pressurization

Solar Impulse European Space Agency / B. Piccard

Turbocompressor Prototype

Operated up to 550'000 rpm Rotor and Bearing Cooling by Leakage Airflow Maximum Winding Temperature 80 °C

Ultra High Speed Drive Systems

World Record !

100W @ 1'000'000 rpm

- µm-Scale PCB Drilling
- Dental Technology
- Laser Measurement Technology
- Turbo-Compressor Systems
- Air-to-Power
- Artificial Muscles
- Mega Gravity Science

Future Importance of EEnergy / Electronic EEnergy Processing

Energy Technology Roadmaps — Increasing EEnergy Demand —

Carbon Dioxide Concentration and Temperature Devlopment

New Policies - Doing More with *Much* **Less!**

Source: H. Nilsson Chairman IEA DSM Program FourFact AB

Reduce CO₂ Emissions Intensity (CO₂/GDP) to stabilize Atmospheric CO₂ Concentration
 1/3 in 2050 → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)

Japan Energy Technology Vision 2100

Images of the three cases of primary energy supply structures

- 100% Share of Electr. and/or Hydrogen in Res./Comm., Transport70% Reduction of Energy Required in Industry
- Strategic Technology Roadmaps of Energy Sector Developed by Backcasting Starting with Assumed Resource and Environmental Constraints

World Net Electric Power Generation 1980 - 2030

Sources: **History:** Energy Information Administration (EIA), *International Energy Annual 2006* (June-December 2008), web site www.eia.doe.gov/iea. **Projections:** EIA, World Energy Projections Plus (2009).

US EPRI Electricity Technology Roadmap

Source: EPRI, US, 2003

Electricity Gains a Progressively Larger Share of Total US Energy Digital Technologies – Precision and Efficiency of Electricity

Inspiring Concepts of Future Renewable Energy Generation Systems

DESERTEC — Airborne Wind Turbines —

DESERTEC

Concentrating Solar Thermal Power Plant in the Sahara Transmission Utilizing HVDC Technology (3% Loss/1000km) Target 2050 - 100GW HVDC, 700TWh @ 5€ct/kWh

Clean Power from the Desert

Technology Overview

Mirrors Concentrating Solar Radiation / Creating Heat

Heat Storage Tanks (e.g. Molten Salt Storage) – Ability to Provide Power for 24h a Day

Conventional Turbine and Generator, Turbines could also be Powered by Natural Gas or Oil

Clean Power from the Desert

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Revolutionize Wind Power Generation Using Kites / Tethered Airfoils

▶ Power of the Wind – Cube of the Wind Speed / Two Times Speed – 2x2x2=8 Times Power

Controlled Power Kites for Capturing High Altitude Wind Power

- ► Wing Tips / Highest Speed Regions are the Most Efficient Parts of a Wind Turbine
- Generator for Power Kites Moved to Ground
- Minimum Base Foundation etc. Required
- Operative Height Adjustable to Wind Conditions

Controlled Power Kites for Capturing High Altitude Wind Power

- Lower Electricity Production Costs than Current Wind Farms
 Generate up to 250 MW/km², vs. the Current 3 MW/km²
 Research at the POLITECNICO DI TORINO

Controlled Power Kites for Capturing High Altitude Wind Power

- Lower Electricity Production Costs than Current Wind Farms
 Generate up to 250 MW/km², vs. the Current 3 MW/km²
- Research at the POLITECNICO DI TORINO

Air Rotor Wind Generator

- Wind at High Altitudes is Faster and More Consistent
 Float Wind Turbines at High Altitudes or Even in the Jet Stream

120m

- Multi-Wing Airframe Supports an Array of Turbines
 Turbines Connect to Motor Generators

- Reinforced Tether Transfers MV-Electricity to Ground
 Composite Tether also Provides Mechanical Connection to Ground

- Electrical System Topology
- 3Φ-AC/DC Rectifier (800V Output) per Turbine
 Connection to Tether via Bidir. 800V/8kV DC/DC Converter
 Weight Limit of 25kg / 100kW (MF Transformer)

- Reinforced Tether Transfers MV-Electricity to Ground
 Composite Tether also Provides Mechanical Connection to Ground

Power Electronic Systems Laboratory

Conventional Off-Shore Windfarms

Medium Voltage Power Collection and Connection to On-Shore Grid

Collection Grids for Off-Shore Wind Parks

- High Efficiency DC Energy Transmission
 Low Weight MF DC/DC Step-up Converter
Energy Storage Systems for Renewable Generation

- Redox-Flow Battery for Individual Scaling of Stored Energy and Rated Output Power
- Bidirectional Step-up DC/DC Converter for Connection to Collection Grid

Redox-Flow Battery Concept

ETH MEGA Cube Research Targets

- 1 Mega Watt Bidirectional DC/DC Conversion
 Maximum Efficiency / Minimum Weight Design

- Specifications
- 20kHz Switching Freq.
- Port 1: 12kV
- Port 2: 1.2kV
- 100 kV DC Isolation
- 99% Efficiency
- 250kg Weight Limit

Research Efforts on High-Power MF DC/DC Converters

- Volume vs. Frequency for Published Transformer Designs
 All Scaled to 1MW Power Rating

Research Efforts on High-Power MF DC/DC Converters

2001-2010

Grid Applications (UNIFLEX EU) * Full Modular Construction * Full Scale Converter: 5MW Traction Applications (Bombardier, ALSTOM, ABB) * Modular MV Side

- * Single LV Converter

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

4.5kV Press Pack IGBT

400A Continuous Current Slow Switching Behavior

Si/SiC Super Cascode Switch

- → HV-Switch Controllable via Si-MOSFET
- * 1 LV Si MOSFET
- * 6 HV SiC JFETs
- * Avalanche Rated Diodes
- → Ultra Fast Switching
- → Low Losses
- → Parasitics
 - * Passive Elements for Simultaneous Turn-on and Turn-off
 - * Stabilization of Turn-off State Voltage Distribution

Si/SiC Super Cascode Switch

- → HV-Switch Controllable via Si-MOSFET
- * 1 LV Si MOSFET
- * 6 HV SiC JFETs
- * Avalanche Rated Diodes
- → Ultra Fast Switching
- → Low Losses
- → Parasitics
- * Passive Elements for Simultaneous Turn-on and Turn-off
- * Stabilization of Turn-off State Voltage Distribution

DC/DC Converter Topology / Modulation

- **Dual Active Bridge / Triangular Modulation**
- ► Series Resonant Converter

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Transformer Concepts

- Core Material Vitroperm 500F
- LV Winding Loss Optimized Copper Foil
 MV Winding Litz Wire / Litz Cable

DBA @ Triangular Modulation

Losses	Core	1.83kW
	Copper	1.93kW
	Total	3.76kW

Efficiency 99.62% Power Density

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Transformer Concepts

- Core Material Vitroperm 500F
 LV Winding Loss Optimized Copper Foil
 MV Winding Litz Wire / Litz Cable

Losses

Efficiency

Conversion Efficiencies

600V IGBT/MOSFET 5-Level NPCC 1200V SiC JFET 3-Level NPCC

EEnergy Utilization / General Power Electronics Application Areas

 $\begin{array}{c} 10^1 10^3 \ W \\ 10^3 10^6 \ W \\ 10^6 10^9 \ W \end{array}$

— Extreme Power Range ——

IT Distributed Power Supply

Distributed / Modular Power Supply

Communications Power Systems 12-V Intermediate Bus Architecture

Server-Farm up to 450 MW

99.9999%/<30s/a \$1.0 Mio./Shutdown

E THH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Lighting

Constant Light Wide Control Range

100,000h Vibration-Resistant Efficiency \rightarrow +30% Design

33% Comm. El. Energy Consumption US20% Energy Saving Potential of Light Source

Lamp Ballasts / Energy-Saving Lamps Gas Discharge Lamps (Automotive Lighting) LED (semiconducting, organic)

Process Technology

\$1,700 Mio. (EU) 50% Automotive Ind. Metal Processing Aerospace Industry

Welding / Laser Cutting

Plasma Technique Laser Cutting Spark Erosion Ind. Heating / Melting Aluminium Melting

135kA@770V

Drive Systems

High Dynamics Precise Control / Positioning Bus Interface

Self-Commissioning Sensorless Monitoring Extremely Wide Appl. Range, e.g. Automation Technology, Assembling, Robotics, HVAC

60% of Electric Energy Utilized in Germany consumed by Drives

5% Employing Electronic Speed Control
35% Possible Share / 40% Energy Saving Pot. (16TWh)
400TWh Drives Energy Consumption in the EU
60% Energy Saving Potential

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Traction

Commuter Trains High Power Locomotives

Multi-Frequency Systems $16^2/3 \text{ Hz} \rightarrow 10 \text{kHz} / \text{Transformer-less}$ Super-Cap-Storage for Trams

Maglev Trains

38 MVA 0...56Hz 552km/h

More Electric Aircraft

Air Traffic Growth 4.7%/a

360Hz...800Hz VF Power Generation 270V_{DC} Power Distribution Replacement of Hydraulic by Electric System

The Efficiency Challenge

EEnergy Supply Chain

— Energy Saving Potential of — Industrial Drives Systems

Negawatts instead of Megawatts

* The estimate of behavioral change abatement potential was made after implementation of all technical levers; the potential would be higher if modeled before implementation of the technical levers. Source: Global GHG Abatement Cost Curve v2.0; Houghton; IEA; US EPA

Industrial Use of EEnergy

Potential of Power Electronics Contributions

EEnergy Use in Industry / Drives

Energy Saving Potentials for Industrial Drives

Energy Saving Potentials for Industrial Drives

- 60% of Industrial EEnergy Used by Electric Motors
- Motors Frequently Still Running at Fixed Speed / Throtteling
 >40% Energy Saving Potential
- For each 1 \in Purchase Costs 100 \in are Spent for Energy over Lifetime

Systematic Approach for Power Electronics Converter Optimization / Evaluation

Performance Metrics Pareto-Optimal Design Technology Nodes

Power Electronics Performance Trends

- Performance Indices
- Power Density [kW/dm³]
 Power per Unit Weight [kW/kg]
 Relative Costs [kW/\$]
- Relative Losses [%]
- Failure Rate [h⁻¹]

Abstraction of Power Converter Design

Single-Objective Converter Design Optimization

Design for Maximum Power Density

Multi-Objective Converter Design Optimization

Pareto Front - Limit of Feasible Performance Space

Efficiency Optimization

— Power Semiconductors — Boost Inductor Output Capacitor Auxiliaries Minimum Loss MOSFET Chip Area

- Increasing A_{chip}
- Decreasing $R_{DS(on)}$ - Increasing C_{oss}

$$P_{V,T} = R_{DS(on)} I_{T,rms}^{2} + f_{P} \frac{1}{2} C_{Eq} U_{O}^{2}$$

Minimum Loss MOSFET Chip Area

11/29

- Increasing A_{chip}
- Decreasing $R_{DS(on)}$ - Increasing C_{oss}

Ultra-Efficient PFC Rectifier Performance Limits

Inductor Power Density

Relation of Efficiency and Power Density

$$P_{VT,min} \propto \sqrt{\rho_L} \sqrt{\frac{G^*}{C^*}} P_o \rightarrow \qquad (1 - \eta_{max}) = \gamma_T \sqrt{\frac{G^*}{C^*}} \sqrt{\rho_L}$$

$$FOM_{\eta_{\rho,1}}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

17/29
18/29

Feasible Performance Space

• Bridgeless PFC Rectifiers @ u_N = 230V

Power Density is Based on Net Volumes → Scaling by 0.6-0.8 Necessary

Technology Sensitivity Analysis Based on η-ρ-Pareto Front

Sensitivity to Technology Advancements Trade-off Analysis

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Converter Performance Evaluation Based on η - ρ - σ -Pareto Surface

► **σ**: kW/\$

Converter Performance Evaluation Based on η - ρ - σ -Pareto Surface

Technology Node'

Observation

Observation

Very Limited Room for Further Performance Improvement !

Efficiency

Research Contribution of Newly Industrialized Countries

Revision and Extension

Component Technologies

Power Semiconductors —— Interconnection / Packaging —— Passives Cooling

Observation

Overestimation of Progress
 Hype Cycles of Technologies

E.g., 3- Φ AC-AC Matrix Converter vs. Voltage DC Link Converter, SiC, etc.

Observation

No 'Killer Application' for Low-Voltage SiC Switch
 Early Analysis of Technology Mapping Highly Beneficial !
 E.g., Evaluation of GaN

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

PES Future Activities Profile

Possible Future Extensions of Power Electronics Systems Applications

Smart Power Delivery System

Extension of Existing Electricity Network

- Decentralized Energy Generation/DER Integration
 Decentralized Storage
 Decentralized Sensors and Computing
 Data Communication Network

- **Advanced Power Electronics Electricity Routers**

Virtual Utilities Microgrids

Bi-Directional Flow of Energy and Information – Interactive Highly Reliable and Economical Grid

Smart Grid / Microgrid Concept

Solid-State Power Flow Control Electricity Routers

Looped Configuration Self-Sufficient Islands High Reliability / Power Quality

Summary

- Virtual Prototyping Multi-Domain/Objective Optimization
- Non-Traditional Topics Still not Well Covered Reliability/Packaging
- Further Standardization
- New Application Areas New Challenges High Voltage/Frequency
 More Application Specific Converters
- Systems Instead of Converters Smart Grid, Green Buildings etc.
 Converter to be Seen as Building Block Continuous Improvement

Challenge

Several Topics Out of Typical Power Electronics Experts Field of Experience -This also Applies for Traditional Academic Education in Power Electronics

Paradigm Shift Required !

It's Not Going to be an Easy Task

Thank You!

Questions ?

EIGENÖSSISCHE TECHNISCHE HOCHSChule Zürich Swiss Federal Institute of Technology Zurich

Transformer Concepts

- Core Material Vitroperm 500F
 LV Winding Loss Optimized Copper Foil
 MV Winding Litz Wire / Litz Cable

Converter Design

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Converter Power Loss Partitioning

- LV Switch Realized by Series / Parallel Connection of SiC JFETs (SemiSouth)
 MV Switch Realized by 4.5kV IGBTs in Multi-Level Arrangement

Si/SiC Super Cascode Switch

- → HV-Switch Controllable via Si-MOSFET
- * 1 LV Si MOSFET
- * 6 HV SiC JFETs
- * Avalanche Rated Diodes
- ➔ Ultra Fast Switching
- → Low Losses
- → Parasitics
- * Passive Elements for Simultaneous Turn-on and Turn-off
- * Stabilization of Turn-off State Voltage Distribution

ETH Zurich Virtual GECK9 RESEARCH **Prototyping Platform 3D-Thermal** 3D-Electromagn. Parasitics **FEM Solver** Extraction Fast Circuit Simulator Reduced Thermal Order Impedance <u>Impedance</u> Matrix Matrix **HF** Magnetics **EMC** Filter Heatsink Reliability Design Design Design Analysis Toolbox Toolbox Toolbox Toolbox Post Processing **Design Metrics Calculation Device Database Controls Toolbox Optimization Toolbox**

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Power Electronic Systems** Laboratory 13/29

Inductor Losses in Dependency of Volume

Operating Conditions and Parameters

 $L, f_P, I \qquad \Phi \propto LI$

Volume [dm³]

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Minimum Loss MOSFET Chip Area

12/29

Dependency on f_P and R_{th}

Ultra-Compact PFC Rectifier Performance Limits

19/29