ETH zürich

Applied Innovative Power Electronics

J. W. Kolar, et al.

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

ETH zürich

Applied Innovative Power Electronics

J. W. Kolar, D. Neumayr, D. Bortis, J. Huber, R. Burkart, L. Schrittwieser

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

- ► 1-Φ Multi-Cell Telecom Rectifier
- Google Little Box 2.0
 3-⊕ SiC vs. Si PV Inverter
- ▶ 3-Φ Buck-Type PFC Rectifier
 ▶ Outlook

$1-\Phi$ Multi-Cell Telecom Rectifier

Multi-Objective Optimization Hardware Demonstrator 4D-Modulation Cap. Coupling Swiss SST

► 1-Φ Multi-Cell Telecom Rectifier

- Input-Series Output Parallel Arrangement
- Interleaving on Input and Output Side
- Realization Based on LV MOSFETs

 $= 230V \pm 10\%$ **V**_{in} $V_{out}^{m} = 48V$ $P_{out} = 3.3kW$ $T_{hold} = 10ms$

- Full-Bridge AC/DC ConverterPhase-Shift Full Bridge DC/DC Stage

 \rightarrow Multi-Objective Optimization

Results of ηρ-Pareto Optimization

ETHzürich

Hardware Demonstrator

- Dimensions: 31cm x 11cm x 4.8cm = 1.6dm³
- 2.1 kW/dm³

 \rightarrow Full-System and Power Board

ETH zürich

Control Concept

- Master / Slave Control
- AC/DC Stages

- DC/DC Stages

 \rightarrow Control of DC Link Voltages Trough DC/DC Converter Stages

Measurement Results

- Closed-Loop Operation
- Measurements @ V_{in}=230V, V_{out}=48V

→ Peak Efficiency of 97.7%
→ Diff. to Calculation due to PCB Losses etc.

► 4D-Interleaving Operation (1)

Utilizing All Degrees of Freedom of the ISOP Multi-Cell Converter Concept

→ Sinusoidal Mains Voltage - Intervals with Low Modulation Index / Low Power
 → Power Decoupling of Input and Output due to DC Link Caps.

ETH zürich

► 4D-Interleaving Operation (2)

Utilizing All Degrees of Freedom of the ISOP Multi-Cell Converter Concept

 \rightarrow Permutation of AC/DC and DC/DC Stages for Average Power Balancing

4D-Interleaving – Performance Improvement

Performance Improvements w. 4D-Interleaving

AC/DC Stages

DC/DC Stages

→ Optimal Operation of AC/DC Converter w. Single PWM Cell, i.e. 5 Mains-Frequency Sw. Cells → Flat DC/DC Converter Efficiency Characteristic

ETH zürich

GaN vs. Si Power Semiconductor Technology

Multi-Objective Optimization

Si MOSFETs

→ Further Efficiency Improvement
 → Higher Power Density by 3D-Integration

AC/DC Rectifier	
Switching frequency	$f_{\rm sw, cell} = 20 \rm kHz$
Boost inductance	AMCC-4, 2605SA1, 25 µH, 7 turns
MOSFETs	$2x$ BSC040N10NS5G, 100 V, 4.0 m Ω
DC-link cap.	4x Panasonic ECO-S1KA222CA, alum. elect.,
	$80 \mathrm{V}, 2.2 \mathrm{mF}$
EMI filter	3 stages, 2x common mode chokes
	(EPCOS R40 cores T38, 10 turns), 3x680 nF
	DC/DC Converter
Switching frequency	$f_{\rm sw}=80{ m kHz}$
Transformer	turns ratio 9:9, RM14, N97, EPCOS
	litz wire $(420x71 \mu m)$
Inductance	RM14LP, N97, EPCOS, 25 μH
Prim. MOSFETs	BSC040N10NS5G, 100 V, 4.0 mΩ
Sec. MOSFETs	BSC040N10NS5G, 100 V , $4.0 \text{ m}\Omega$

• GaN

AC/DC Rectifier	
Switching frequency	$f_{\rm sw,cell} = 20 \rm kHz$
Boost inductance	AMCC-4, 2605SA1, 25 µH, 7 turns
MOSFETs	3x EPC2022, 100 V, 3.2 mΩ
DC-link cap.	4x Panasonic ECO-S1KA222CA, alum. elect.,
ŝ.	80 V, 2.2 mF
EMI filter	3 stages, 2x common mode chokes
	(EPCOS R40 cores T38, 10 turns), 3x680 nF
	DC/DC Converter
Switching frequency	$f_{ m sw}=140 m kHz$
Transformer	turns ratio 7:7, RM14, N97, EPCOS
	litz wire $(420x71 \mu\text{m})$
Inductance	RM14LP, N97, EPCOS, 12 µH
Prim. MOSFETs	EPC2022, $100 V$, $3.2 m\Omega$
Sec. MOSFETs	$2xEPC2022, 100 V, 3.2 m\Omega$
Sec. MOSFETs	$2 \text{xEPC} 2022, 100 \text{ V}, 3.2 \text{ m} \Omega$

ETH zürich

Remark #1: Capacitive Coupling ISOP DC/DC Converter

- Phase-Shift or Resonant Operation Cap. Coupled "Sine Amplitude Converter"
- Conventional Transformer-Coupled DC/DC Converter Cell

 \rightarrow Substantial Saving of Losses / Volume

Remark #1: Capacitive Coupling ISOP DC/DC Converter

- Multi-Objective Optimization of Cap. Coupled Phase-Shift Full-Bridge
- Transformer

ightarrow - 80% Volume and Substantial Saving of Losses

Remark #2: Isolated Front-End vs. Isolated Back-End

AC

Isolated DC/DC Back End

■ Isolated AC/ | AC | Front End

F

CS VR \pm DC

- Conventional ISOP Topology
- Direct Input Current Control
- Indir. or Direct Output Voltage Control
- Controlled or Sine Ampl. Isol. Stage
- Distributed DC Link Capacitors
- High Complexity

- Swiss SST (S3T)
- Indirect Input Current Control
- Direct Output Voltage Control
- Sine Amplitude Isolation Stage
- Single Storage Capacitor
- Low Complexity

Remark #2: Isolated Front-End vs. Isolated Back-End

— 14/40

Full-Bridge DC/AC Converter DC/ AC - Converter + Unfolder "The Ideal Switch is Not Enough" (!)

LITTLE BOX Little Box 1.0 Converter Topology CHALLENGE

- Interleaving of 2 Bridge Legs per Phase
- Active DC-Side Buck-Type Power Pulsation Buffer
- 2-Stage EMI AC Output Filter

- **ZVS of All Bridge Legs** @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM Interleaving)
- Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure

Little Box 1.0 Power Pulsation Buffer

- High Energy Density 2^{nd} Gen. $400V_{DC}$ CeraLink Capacitors Utilized as Energy Storage Highly Non-Linear Behavior \rightarrow Opt. DC Bias Voltage of 280VDC •
- Cap. Losses of 16W @ 2kVA Output Power

■ Effective Large Signal Capacitance of C ≈140µF

17/40

Little-Box 1.0 Prototype (1)

DC-Side Power Pulsation Buffer

- 8.2 kW/dm³
- 8.9cm x 8.8cm x 3.1cm
- 96,3% Efficiency @ 2kW
- T_c=58°C @ 2kW
- $-\Delta u_{\rm DC} = 1.1\%$
- $\Delta i_{\rm DC}^{\rm e} = 2.8\%$ THD+N_U = 2.6%
- $THD + N_T = 1.9\%$

Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents

Little-Box 1.0 Prototype (2)

DC-Side Power Pulsation Buffer

- 8.2 kW/dm³
- 8.9cm x 8.8cm x 3.1cm
- 96,3% Efficiency @ 2kW
- T_c=58°C @ 2kW
- $-\Delta u_{\rm DC} = 1.1\%$
- $\Delta i_{DC} = 2.8\%$ THD+N_U = 2.6%
- $THD + N_T = 1.9\%$

Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents

Little-Box 1.0 Measurement Results

• DC-Side Power Pulsation Buffer

• Compliant to All *Original* Specifications (!)

18/40

Little Box 1.0 \rightarrow X6S Power Pulsation Buffer (1)

- X6S Capacitor Technology Allows Considerable Loss Reduction vs. CeraLink (P2 vs. P7)
- Lower Losses / Lower Heatsink Volume → Higher Power Density

• Lower Volume Comp. to Electrolytic Cap. only for $\Delta V/V < 5\%$ / No Efficiency Benefit

19/40

Little Box 1.0 \rightarrow X6S Power Pulsation Buffer (2)

- X6S Capacitor Technology Allows Considerable Loss Reduction vs. CeraLink (P2 vs. P7)
- Lower Losses / Lower Heatsink Volume → Higher Power Density

• Lower Volume Comp. to Electrolytic Cap. only for $\Delta V/V < 5\%$ / No Efficiency Benefit

ETH zürich

Little Box 1.0 \rightarrow X6S Power Pulsation Buffer (3)

- $\begin{array}{l} \mbox{Multi-Objective Optimization of Little-Box 1.0 (incl. CeraLink \rightarrow X6S)} \\ \mbox{Absolute Performance Limits (I) DSP/FPGA Power Consumption} \\ (II) Heatsink Volume @ (1-\eta) \end{array}$

• Further Performance Improvement for Triangular Current Mode (TCM) \rightarrow PWM

Little Box 1.0 @ Ideal Switches

- Multi-Objective Optimization of Little-Box 1.0 (Example: TCM, X6S Power Pulsation Buffer)
- Step-by-Step Idealization of the Power Transistors

• The Ideal Switch is NOT Enough (!) \rightarrow High Frequency Magnetics etc.

Little Box 2.0 - New Converter Topology

- Novel Converter Topology DC/ AC Buck Converter + Unfolder Temporary PWM of Unfolder for Ensuring Continuous Current Control TCM or PWM of Buck-Converter

Full Optimization of All Converter Options / Idealization of the Switches

Little Box 2.0 - Multi-Objective Optimization

- Novel Converter Topology DC/ AC Buck Converter + Unfolder Temporary PWM of Unfolder for Ensuring Continuous Current Control TCM or PWM of Buck-Converter

■ Full Optimization Allows Power Density of ≈250W/in³ @ 98% Efficiency

$3-\Phi$ SiC vs. Si PV Inverter

Multi-Objective Optimization Flying Capacitor Conv. Concept

• Analysis of $3-\Phi$ Si vs. SiC PV Inverter

- Single-Input/Single-MPP-Tracker Multi-String PV Converter
- DC/DC Boost Converter for Wide MPP Voltage Range
- Output EMI Filter
- Typical Residential Application

- **Systematic Multi-Objective** η - ρ - σ -Comparison of Si vs. SiC
- Exploit Excellent Hard- AND Soft-Switching Capabilities of SiC
- Find Useful Switching Frequency and Current Ripple Ranges
- Find Appropriate Core Material

25/40

Topologies - Converter Stages

Topologies - Filter Stages

 2-Stage DM & CM Filter for 2L-PWM and 3L-PWM

- 2-Stage DM & CM Filter for 2L-TCM
- **TCM Inductor Acting** as DM & CM Inductance

Modulation Schemes - PWM Converters

- Three-Level PWM Inverter (3L-PMW)
- Symmetric Boost Converter
- Interleaved Operation
- Part. Compensation of LF DC-Link Midpoint Variation

- 3-Level T-Type Converter
- 3-Level PWM Modulation
- 3rd Harmonic Injection

Two-Level PWM Inverter (2L-PMW)

Modulation Schemes - TCM Converter

- Two-Level TCM Inverter (2L-TCM)
- 2-Level/Double Interleaved Booster
 Interleaved TCM Operation
 Turn-Off of Branch in Partial Load

- 2-Level/Double Interleaved
- Interleaved TCM Operation
 Turn-Off of Branch in Partial Load

- 29/40

Power Electronic Systems Laboratory

Global Optimization Routine

- Independent Design Variables
- 3L-PWM

 $\vec{\Pi}_{\text{sys}}^{3\text{LPWM}} : f_{\text{sw}} \in [6, 36] \text{ kHz}, \quad \Delta I_{L,\text{max}}^{\text{pp}} \in [5, 60] \%$

— 2L-PWM

 $\vec{\Pi}_{\text{sys}}^{2\text{LPWM}}: f_{\text{sw}} \in [12, 72] \text{ kHz}, \ \Delta I_{L, \text{max}}^{\text{pp}} \in [5, 60] \%$

- **2L-TCM** $\vec{\Pi}_{sys}^{2LTCM} : f_{sw,min} \in [12, 84] \text{ kHz}, \quad k_{f_{sw}} \in [4, 12]$
- Dependent Design Variables
- Main Inductances Function of f_{sw} and $\Delta I_{L,max}^{pp}$
- Filter Components Based on CISPR Class B
- European Efficiency

$$\begin{split} \eta_{\text{euro}} = & 0.05 \cdot \eta_{0.03 \cdot P_{\text{r}}} + 0.1 \cdot \eta_{0.1 \cdot P_{\text{r}}} + 0.2 \cdot \eta_{0.2 \cdot P_{\text{r}}} + \\ & 0.3 \cdot \eta_{0.3 \cdot P_{\text{r}}} + 0.5 \cdot \eta_{0.5 \cdot P_{\text{r}}} + 1 \cdot \eta_{1.0 \cdot P_{\text{r}}} \end{split}$$

- Add. Weighted for {525, 575, 625} V MPP Voltage

Optimization Results - Pareto Surfaces (1)

- No Pareto-Optimal Designs for f_{sw,min}> 60 kHz
- No METGLAS Amorphous Iron Designs

- Pareto-Optimal Designs for Entire Considered f_{sw} Range
- No METGLAS Amorphous Iron Designs
- Pareto-Optimal Designs for Entire Considered f_{sw} Range
- METGLAS Amorphous Iron and Ferrite Designs

Optimization Results - Pareto Surfaces (2)

- 3L-PWM Core Material
- Compact Designs with Amorphous Core Material @ Low Ripples
- Cheap Designs with Ferrite @ High Ripples Despite Larger Volume
- 2L-TCM Core Material
- Only Ferrite for 2L-TCM Due Large HF Excitations
- Expected Result

- 2L-PWM Core Material
- Ferrite @ High Ripples Cheaper AND Smaller - Unexpected Result (!)
- Amorphous Core Material too High Losses Already @ Low Ripples, High Flux Density Not Exploited

Increasing the # of Levels - Flying Capacitor Converter (FCC)

- **Each Cell Consists of 2 Switches / 1 Capacitor**
- Phase-Modular Topology Supports DC/AC and AC/AC Conversion
- Standard Phase-Shift PWM

Flying Capacitor Converter – Simulation Results (1)

- **Example of** *N***=9-Level FCC**
- Switch Blocking Voltage:
- $U_{Sw} = U_{DC}/(N-1) \rightarrow 100V @ 800V DC Link$ $f_{Sw,eff} = f_{Sw}(N-1) \rightarrow 960kHz @ 120kHz/Switch$
- Effective Output Frequency $f_{Sw,eff} = f_{Sw}(N-1) \rightarrow 9$
- Standard Phase-Shift PWM
- \rightarrow *P*=30kW *C_{FC}*= 10uF LC-Filter: 3uH / 1uF

Flying Capacitor Converter – Simulation Results (2)

- **Concept Applicable for DC/AC and DC/DC Operation**
- Design of Flying Capacitors only for Sw.-Frequency Components

 \rightarrow DC/DC Operation (800V_{DC}/400V_{DC})

Natural Flying Cap. Voltage Balancing Independent of Current Direction

Flying Capacitor Converter – Simulation Results (3)

- **Design Issues:** Start-Up / Shut-Down / No-Load / Standby (DC Energized, No U_{out})
- **E.g. Startup:** U_{DC} Pre-Charging Time Constant $\tau_{DC} = R_{DC}C_{DC} > 2 \tau_{FC}$

→ Example of Startup of 5-Level FCC (U_{DC} =450V, U_{CF} ≈ 110V)

$\begin{array}{c} \textbf{3-} \Phi \text{ Buck-Type} \\ \textbf{PFC Rectifier} \end{array}$

Integr. Active Filter Rectifier Concept High Efficiency Demonstrator

► 3-Φ Integrated Active Filter (IAF) Rectifier

- Injection of 3rd Harmonic Ensures Sinusoidal Input
- Six-Pulse Output of Uncontrolled Rectifier Stage
- Buck-Type Output Stage Generates DC Output from Six-Pulse Rectifier Output
- Three Devices in the Main Conduction Path

► 3-Φ IAF Rectifier Optimization

- Multi-Objective Optimization Max. Efficiency / Max. Power Density / Min. Life Cycle Costs
- Life Cycle Costs: (i) Initial Costs & (ii) Electricity Costs of Converter Losses

→ 10 Years of 24x7 Operation Demands $\eta \approx 99\%$ for Min. LCC

Power Electronic Systems Laboratory

- **Efficiency** η> 99% @ 60% Rated Load
- Mains Current THD≈ 2% @ Rated Load
- Power Density $\rho \approx 4 kW/dm^3$

 \rightarrow SiC Power MOSFETs & Diodes

99.5 99.0 8 Efficiency in 98.5 0.86 Calculation $U_{\rm pn} = 400 \, {\rm V}$ Calculation $U_{\rm pn} = 380 \, {\rm V}$ 97.5 Measurement $U_{\rm pn} = 400 \, {\rm V}$ • Measurement $U_{\rm pn} = 380 \, {\rm V}$ 0 97.0 2.08.0 0.0 1.0 3.0 4.0 5.06.0 7.09.0 Output Power in kW 400 $u_{\rm b}$ $u_{\rm c}$ u_{a} Voltage in V 2000 -200 -400 20 $i_{
m b}$ \imath_{c} Current in A 100 -10 -20 60 120180 300 360 0 240 ωt in $^{\circ}$

Conclusions _____

Outlook

- Research Targets @ ETH Zurich
- 1-\$\Phi\$ 250W/in³ @ 98% PFC Rectifier Module (EV Charger etc.)
- 1- Φ 99+% PFC Rectifier (Telecom etc.)
- 3-Φ Non-Isolated Very High Bandwidth AC Source
- 3-Φ Non-Isolated Ultra-Compact Inverter
- 3-Φ 99% Isolated Two-Stage (!) AC/DC Converter
- Bidirectional Extr. Eff. Resonant Multi-Port DC/DC Converters
- Design Space Diversity of Multi-Objective Optimization
- Little Box 3.0 / HF Magnetics (10MHz)
- Cellular Scalable Converter Topologies
- etc.

Thank You!

Questions

