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Little Box Challenge
Requirements
Little Box 1.0
Other Finalists



● Design / Build the 2kW 1-ΦSolar Inverter with the Highest Power Density in the World
● Power Density > 3kW/dm3 (50W/in3)
● Efficiency    > 95%
● Case Temp.  < 60°C
● EMI  FCC Part 15 B

■ Push the Forefront of New Technologies in R&D of High Power Density Inverters

!

!

!

!
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The Grand Prize

■ Timeline – Challenge Announced in Summer 2014
– 2000+ Teams Registered Worldwide
– 100+ Teams Submitted a Technical Description until July 22, 2015
– 18 Finalists (3 No-Shows)

$1,000,000

● Highest Power Density (> 50W/in3)
● Highest Level of Innovation
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● Full-Bridge Output Stage 
● Modulation of Both Bridge Legs

Selected Converter Topology

■ DM Component of  u1 and u2 Defines Output Voltage uO
■ No Low-Frequency CM Component of  u1 and u2 (Different to e.g. 1-Φ PFC Rectifier Systems !)
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■ Requires Only Measurement of Current Zero Crossings, i = 0
■ High fS Around i = 0  Challenging for Digital Control 
■ Variable Sw. Freq. fS Lowers EMI

● TCM Operation for Resonant Voltage Transition @ Turn-On/Turn-Off

Triangular Current Mode (TCM) ZVS  Operation


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● Saturable Inductor – Toroidal Core    R4 x 2.4 x 1.6, EPCOS (4mm Diameter)
– Core Material    N30, EPCOS

■ Operation Tested up to 2.5MHz Switching Frequency

i =0 Detection
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4D-Interleaving
● Interleaving of 2 Bridge Legs per Phase  - Volume / Filtering / Efficiency Optimum
● Interleaving in Space & Time – Within Output Period
● Alternate Operation of Bridge Legs @ Low Power
● Overlapping Operation @ High Power

■ Opt. Trade-Off of Conduction & Switching Losses  / Opt. Distribution of Losses
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DC-Side Passive Power Pulsation Buffer

■ C > 2.2mF / 166 cm3   Consumes 1/4 of Allowed Total Allowed Volume !

S0 = 2.0 kVA
cos Φ0 = 0.7
VC,max = 450 V
ΔVC/VC,max=3 %

● Electrolytic Capacitor
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● Large Voltage Fluctuation Foil or Ceramic Capacitor
● Buck-Type (Lower Voltage Levels) or Boost-Type DC/DC Interface Converter

■ Significantly Lower Overall Volume Compared to Electrolytic Capacitor

108 x 1.2μF /400 V
Ck ≈ 140μF
VCk= 23.7cm3

CeraLink

DC-Side Active Power Pulsation Buffer
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● Cascaded Control Structure 

■ P-Type Resonant Controller
■ Feedforward of Output Power Fluctuation
■ Underlying Input Current (ii) / DC Link Voltage (uC) Control

DC-Side Active Power Pulsation Buffer
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Selected Power Semiconductors
● 600V IFX Normally-Off GaN GIT  - ThinPAK8x8
● State-of-the-Art Gate Drive 

■ Duty Cycle and Frequency Dependent Gate Voltage

Vgs,th = 1.2V    
Rds,on= 55 mΩ @ 25°C   
Rg,int = 5Ω

►

– R3 Discharges Cs
During Off-State

– Cs Enables High Gate 
Current for Fast Turn-On

►
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High dv/dt-Immunity Gate Drive

– Diode ZD1 Prevents
Complete Discharge of Cs

During Off-State

►

– Diode ZD2 Quickly 
Discharges Cs to VZD2 

@ Turn-Off

■ R4 Ensures Precharge of Cs Neg. Gate Voltage @ Start-Up

● Fixed Negative Turn-Off Gate Voltage - Independent of  Sw. Frequency and Duty Cycle
● Extreme dv/dt-Immunity  (500kV/μs) - Due to CM Choke at Signal Isolator Input
● < 30ns Overall Prop. Delay
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EMI Filter Topology (1)
● Conventional Filter Structure – DM Filtering Between the Phases

– CM Filtering Between Phases and PE

■ CM Cap. Limited by Earth Current Limit – Typ. 3.5mA for PFC Rectifiers (GLBC: 5mA, later 50mA !)
■ Large CM Inductor Needed – Filter Volume Mainly Defined by CM Inductors
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EMI Filter Topology (2) 
● Filter Structure with Internal CM Capacitor Feedback 
● Filtering to DC- (and Optional to DC+)

■ No Limitation of CM Capacitor C1 Due to Earth Current Limit µF Instead of nF Can be Employed
■ Allows Downsizing of CM Inductor and/or Total Filter Volume  

1
2
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Final Converter Topology

■ ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving) 
■ Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure  

● Interleaving of 2 Bridge Legs per Phase   
● Active DC-Side Buck-Type Power Pulsation Buffer
● First Stage AC Filter Caps Connected to DC-
● 2-Stage EMI AC Output Filter

(1)  Power Pulsation Buffer
(2)  EMI Output  
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High Frequency Inductors (1)

■ Dimensions  - 14.5 x 14.5 x 22mm3

- L= 10.5μH
- 2 x 8 Turns
- 24 x 80μm Airgaps 
- Core Material DMR 51 / Hengdian
- 0.61mm Thick Stacked Plates
- 20 μm Copper Foil / 4 in Parallel
- 7 μm Kapton Layer Isolation
- 20mΩ Winding Resistance / Q≈600
- Terminals in No-Leakage Flux Area

● Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect
● Very High Filling Factor / Low High Frequency Losses
● Magnetically Shielded Construction Minimizing EMI
● Intellectual Property of F. Zajc / Fraza
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High Frequency Inductors (2)
● High Resonance Frequency Inductive Behavior up to High Frequencies
● Extremely Low AC-Resistance Low Conduction Losses up to High Frequencies
● High Quality Factor

■ Shielding Eliminates HF Current through the Ferrite Avoids High Core Losses 
■ Shielding Increases the Parasitic Capacitance

17/92



■ Comparison of Temp. Increase of a Bulk 
and a Sliced Sample @ 70mT / 800kHz

● Cutting of Ferrite Introduces Mech. Stress  
● Significant Increase of the Loss Factor
● Reduction by Polishing / Etching (5 μm)

x 7 (!)

*  Knowles (1975!)

High Frequency Inductors (3)
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Thermal Management (1) 

● Evaluation of Optimum Heatsink Temp. for Thermal Isolation of Converter

● 30°C max. Ambient Temperature
● 60°C max. Allowed Surface and Air Outlet Temperature

■ Minimum Volume Achieved w/o Thermal Isolation with Heatsink @ max. Allowed Surface Temp.
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Thermal Management (2) 
● Overall Cooling Performance Defined by Selected Fan Type and Heatsink

– Axial Fan– Radial
Blower

– Square 
Cross Section

of Heatsink for 
Using a Fan

– Flat and
Wide 

Heatsink 
for Blower

■ Optimal Fan and Heat Sink Configuration Defined by Total Cooling System Length
■ Cooling Concept with Blower Selected Higher CSPI for Larger Mounting Surface 
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● 30mm Blowers with Axial Air Intake / Radial Outlet
● Full Optimization of the Heatsink Parameters

- 200um  Fin Thickness 
- 500um  Fin Spacing  
- 3mm Fin Height 
- 10mm Fin Length
- CSPI = 37 W/(dm3.K) 
- 1.5mm Baseplate

■ CSPIeff= 25 W/(dm3.K) Considering Heat Distribution Elements
■ Two-Side Cooling  Heatsink Temperature = 52°C @ 80W (8W by Natural Convection)

Thermal Management (3) 
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● System Employing Active CeraLinkTM 1-Φ Power Pulsation Buffer  

Little Box 1.0

- 8.2 kW/dm3

- 8.9cm x 8.8cm x 3.1cm
- fS = 250kHz … 1MHz
- 96,3%  Efficiency @ 2kW
- Tc=58°C @ 2kW

- ΔuDC=  1.1%
- ΔiDC= 2.8%
- THD+NU = 2.6%
- THD+NI = 1.9%

■ Compliant to All “Original” Specifications (!)

- ignd < 5mA (!)
- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All  Own IP / Patents

22/92

135 W/in3
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- ΔuDC=  1.1%
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- ignd < 5mA (!)
- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All  Own IP / Patents

135 W/in3

● System Employing Active CeraLinkTM 1-Φ Power Pulsation Buffer  
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■ Compliant to All Specifications

Output Current  (10 A/div)
Inductor Current  Bridge Leg 1-1  (10A/div)
Inductor Current  Bridge Leg 1-2  (10A/div)

DC Link Voltage (AC-Coupl., 2V/div)
Buffer Cap. Voltage  (20 V/div)
Buffer Cap. Current  (10 A/div)

Output Voltage  (200V/div)

- Ohmic Load / 2kW

Measurement Results (1)
● System Employing Active CeraLinkTM 1-Φ Power Pulsation Buffer  
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■ Stationary Operation @ 2kW Output Power 

Buffer Cap. Voltage  (50 V/div)
Buffer Cap. Current  (10 A/div)

Conv. Inp. Curr.  (AC Coupl. 500 mA/div)
DC Link Voltage  (AC Coupl. 1 V/div)

● System Employing Active CeraLinkTM 1-Φ Power Pulsation Buffer  

Measurement Results (2)
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■ Compliant to All Specifications

ηw=95.07% Weighted Efficiency

Measured Efficiency

Interpolated Efficiency

Output Power

Ef
fi

ci
en

cy

● System Employing Active CeraLinkTM 1-Φ Power Pulsation Buffer  

Measurement Results (3)
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Volume & Loss Distribution

■ Large Heatsink (incl. Heat Conduction Layers)
■ Large Losses in Power Fluctuation Buffer Capacitor (!)
■ TCM Causes Relatively High Conduction & Switching Losses @ Low Power
■ Relatively Low Switching Frequency @ High Power – Determines EMI Filter Volume 

● Volume Distribution (240cm3) ● Loss Distribution (75W)
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■ 70…300 W/in3

■ 35 kHz … 500kHz… 1 MHz (up to 1MHz: 3 Teams)
■ Full-Bridge or  DC/ AC  Buck Converter + Unfolder 
■ Mostly Buck-Type Active Power Pulsation Filters (Ceramic instead of Electrolytic Caps)
■ GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

● 18 Finalists (3 No-Shows)    
● 7 Groups of Consultants / 7 Companies / 4 Universities

Finalists - Performance Overview  

@ Rated Power

(1) Virginia Tech
(2) Schneider Electric
(3) EPRI (Univ. of Tennessee)
(4) Venderbosch
(5) Energy Layer
(6) ETH Zurich
(7) Rompower
(8) Tommasi-Bailly
(9) Red Electric Devils
(10) AHED
(11) FH IISB
(12) Univ. of Illinois
(13) AMR

Note: Numbering of 
Teams is Arbitrary.  .
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Little Box Challenge
Grand Prize Winner

Dr. Paul Bleus
Directeur R&D

Red Electric Devils

Olivier Bomboir, Paul Bleus, Fabrice 
Frebel, Thierry Joannes, Francois Milstein, 
Pierre Stassain, Christophe Geuzaine, Carl 
Emmerechts, Philippe Laurent



Red Electric Devils    
● No Low-Frequ. Common-Mode Output Voltage Comp.  ignd < 5mA (!)
● Buck-Type DC-Side Active Power Pulsation Filter (MLCC Cap. <150μF, 200Vpp)

■ 2 x Interleaved Bridge Legs for Each Half-Bridge   
■ DM Inductors  (L1/L2 and L4/L5) and  Series Connected CM Inductor (L7/L8)
■ Single Open-Loop Hall Sensor Outp. Curr. Measurement + Observer-Based Curr. Reconstruction

►
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■ DSP & CPLD Control
■ GaN Systems @ ZVS (35kHz … 240kHz) 
■ Shielded Multi-Stage EMI Filter @ DC Input & AC Output

►►
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Red Electric Devils   
● No Low-Frequ. Common-Mode Output Voltage Comp.  ignd < 5mA (!)
● Buck-Type DC-Side Active Power Pulsation Filter (MLCC Cap. <150μF, 200Vpp)

145 W/in3

Presenter
Presentation Notes
MLCC = Multilayer Ceramic Chip



● Variable Phase-Shift of the Half-Bridges (0° or 90°) Dep. on Duty Cycle 

■ Selection of Opt. Phase Shift  &  Sw. Frequency for  ZVS  &  Min. Size of Filter Ind. LCM & LDM 

Φ = 0°
dL = 0.75
dN = 0.25

Φ = 90°
dL = 0.5
dN = 0.5

Φ = 0°
dL = 0.5
dN = 0.5
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● 3D Sandwich Assembly
● Single Ultra-Thin PCB – Power / Control / Aux.
● Honeycomb Cu-Heatsink & Al Oxide Inductor Cooling
● MMLC Storage Caps Rows Utilized as Heatsink “Fins” (1mm Gaps)

►
►

■ 145 W/in3 

■ 95.4 % CEC Efficiency
■ ignd < 5mA (!)
■ CSPI = 22.6 W/(dm3.K) - Heatsink & Axial Fan 
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Tc=51°C

● 3D Sandwich Assembly
● Single Ultra-Thin PCB – Power / Control / Aux.
● Honeycomb Cu-Heatsink & Al Oxide Inductor Cooling
● MMLC Storage Caps Rows Utilized as Heatsink “Fins” (1mm Gaps)

■ 145 W/in3 

■ 95.4 % CEC Efficiency
■ ignd < 5mA (!)
■ CSPI = 22.6 W/(dm3.K) - Heatsink & Axial Fan 
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Little Box Challenge
Top 3 Finalist

Team
Miao-xin Wang, Rajesh Ghosh, Srikanth 
Mudiyula, Radoslava Mitova, David Reilly, 
Milind Dighrasker, Sajeesh Sulaiman, Alain 
Dentella, Damir Klikic, Michael Hartmann



Global Team

● High Efficiency & Robustness Preferred  Larger Size
● PWM of Both Legs of Output Full-Bridge       No Low. Frequ. CM Output Voltage Comp.
● DC-Side Series (!) Active Power Puls. Filter  Compensates 120Hz DC Link Volt. Variation

34/92

■ CDC = 400uF / 450V
■ 1/5 Volume  Comp. to only Bulk Capacitors
■ Vdcinput Ripple <10% (<30Vpp) @ Full Load  

100 W/in3

■ Nanocrystalline CM Choke 
■ DC-Side & AC-Side EMI/RF Filter
■ Q5…8 – TO247 SiC MOSFETs, 45kHz of Both Legs



Global Team

● High Efficiency & Robustness Preferred  Larger Size
● PWM of Both Legs of Output Full-Bridge       No Low. Frequ. CM Output Voltage Comp.
● DC-Side Series (!) Active Power Puls. Filter  Compensates 120Hz DC Link Volt. Variation
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100 W/in3

■ CDC_RF=2 x 1500uF/25V, UDC_RF=15V
■ Only  52VA Processed Ripple Filter Power @ Rated Output (!)
■ Q1/Q2 & Q3/Q4 - Rds,on= 2.2mΩ MOSFETs (40V, 100A), w/o Heatsink, fS= 130kHz of Both Legs
■ TI Piccolo DSP Control of Entire System / Open Loop Control of 120Hz Comp. Filter

■ ignd < 25mA (!)
■ 97.2 % CEC Efficiency



Adv. Modulation / Circuit Concepts
Measurement of Buffer Cap. Performance
Measurement of GaN ZVS & On-State Losses
Measurement of Multi-Airgap Core Losses
ηρ-Pareto Optimization

Optimization of   
Little-Box 1.0



● TCM   ZVS but Large Current Ripple & Wide Frequency Variation
● PWM  Const. Sw. Frequency but Hard Sw. @ Current Maximum  

● Opt. Combination of TCM & PWM  Optim. Frequ. Variation Over Output Period
● Exp. Determination of Loss-Opt. Sw. Frequency fOFM Considering DC/DC Conv. Stage

■ DC/AC Properties Calculated Assuming Local DC/DC Operation
■ Loss-Optimal Local Sw. Frequ. fOFM for Given VDC & Local iO & vCO

CO

DC

Eff. Optimal fS-Modulation
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● TCM   ZVS but Large Current Ripple & Wide Frequency Variation
● PWM  Const. Sw. Frequency but Hard Sw. @ Current Maximum  

● Opt. Combination of TCM & PWM  Optim. Frequ. Variation Over Output Period
● Exp. Determination of Loss-Opt. Sw. Frequency fOFM Considering DC/DC Conv. Stage

■ DC/AC Properties Calculated Assuming Local DC/DC Operation
■ Loss-Optimal Local Sw. Frequ. fOFM for Given VDC & Local iO & vCO

CO

DC

0

Eff. Optimal fS-Modulation
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● Resulting Time-Dependency of Optimal Sw. Frequ. & Power Loss  
● Comparison with 140 kHz Const. Sw. Frequency PWM 
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Eff. Optimal fS-Modulation

■ Higher Average Switching Frequency fs @ Light Loads
■ Reduction of fs @ Mains Voltage Peak (for Ohmic Load) for Sustaining ZVS



● Optimal Inductor Current Envelope for Diff. Output Power Levels 

Eff. Optimal fS-Modulation
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■ Higher Average Switching Frequency fs @ Light Loads
■ Reduction of fs @ Mains Voltage Peak (for Ohmic Load) for Sustaining ZVS



Buffer Capacitor Losses / Cap. 
Power Semicond. ZVS & On-State Losses 
Ferrite Multi-Airgap Core Losses

Measurements



■ PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points
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CeraLink  vs.  X6S
● Electrolytic Capacitors                    Limited by Lifetime Current Limit  
● X6S MLCC, 2.2μF, 450 V Class II     Highest Energy Density but Low Cap. @ High DC Bias
● CeraLinkTM,1μF /2μF, 650 V            PLZT Ceramic, High Cap. @ High DC Bias   
● CeraLinkTM Allows Op. @ 125°C      Very Low ESR @ High Frequencies  

Presenter
Presentation Notes
C. B. Barth, I. Moon, Y. Lei, S. Qin, and R. C. N. Pilawa-Podgurski, “Experimental evaluation of capacitors for power buffering in single- phase power converters,” in Proc. of IEEE Energy Convers. Congr. Expo. (ECCE), 2015, pp. 6269–6276.



■ Experimental Setup for Generation of DC Bias & Superimposed AC Voltage
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Presentation Notes
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● CeraLinkTM      – Large-Signal 120Hz Excitation Reveals Large Hysteresis
– Significantly Higher Losses @ 120Hz Comp. to X6S MLCC 
– ESR Drops Significantly @ Higher Temp.
– 36μF (27μF) Blocks of Prepackaged Single Chips 
– Reliable Mech. Construction

Top =60°C

Top =60°C

● X6S MMLC – Only Available as Single Chips
– Complicated Packaging 

CeraLink  vs.  X6S
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CeraLink  vs.  X6S  

EPCOS/TDK 
CeraLinkTM 2µF, 600V

TDK Class II 
X6S MLCC 2.2µF, 450V

■ PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points

►

►

● Variation ofDC Bias and 
Superimposed AC Voltage
@ 60°C Operating Temp.

Designed Op. Point

44/92



Measurement of 
GaN ZVS  &  On-State Losses  



● Little-Box 1.0 Experiments Indicated Residual ZVS Losses of GaN Power Transistors
● Losses Cannot be Explained by Remaining iD, uDS Overlap / Non-Ideal Gate Drive etc.

Analysis of GaN Power Transistor ZVS Losses

■ Potentially Large Measurement Error for Electric Double-Pulse Sw. Loss Measurement 
■ Accuracy only Guaranteed by Direct Loss Measurement  Calorimetric Approach 

45/92



Presenter
Presentation Notes
400V UDC, parasitic capacitance einzeichnen !
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● Little-Box 1.0 Experiments Indicated Residual ZVS Losses of GaN Power Transistors   
● Losses Cannot be Explained by Remaining iD, uDS Overlap / Non-Ideal Gate Drive

Analysis of GaN Power Transistor ZVS Losses

■ Potentially Large Measurement Error for  Electrical Double-Pulse Sw. Loss Measurement 
■ Accuracy only Guaranteed by Direct Loss Measurement  Calorimetric Approach 

Presenter
Presentation Notes
8kV  400V



● “Inductor in the Box”      Accurate DC Inp. & Outp. Power Measurement, Subtr. on Ind. Losses
● “Bridge Leg in the Box”  Direct Measurement of the Sum of Cond. & Sw. Losses

Calorimetric Measurement of ZVS Losses

■ “Bridge Leg in the Box”  &  Fast Measurement  by Cth.ΔT/Δt Evaluation
■ DC/DC Operation @ High Sw. Frequency for Large Ratio of Sw. and Conduction Losses
■ Subtraction of the Cond. Losses from Datasheet or Dir. Measurement
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■ Isolated Temp. Measurement with Optical Fiber (GaAs Crystal) Instead of Thermocouple
■ Calibration by On-State of T1 and T2 & DC Current Operation / DC Power Loss Measurement

48/92

Calorimetric Measurement of ZVS Losses
● “Bridge Leg in the Box”  &  Fast Measurement  by Cth.ΔT/Δt Evaluation
● Subtraction of the Cond. Losses from Datasheet or Direct Measurement
● DC/DC Operation @ High Sw. Frequency for Large Ratio of Sw. and Conduction Losses



● Calibration by  On-State of T1 and T2 & DC Current Operation / DC Power Loss Measurement  
● Identification of  Thermal Cap. Cth and  Thermal Resistance Rth

Calibration of “Bridge Leg in the Box” Setup 

■ DC Power Loss Measurement Ensures High Accuracy
■ Thermal Behavior for Short Measurement Times Mainly Determined by Cth
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50/92

● Clamping Diode for Limiting the On-State Voltage Measurement (OVM) to  2V  
● Subtraction of the SiC Diode Forward Voltage Drop for High Accuracy  (2mV) 

Accurate On-State Voltage Measurement  

■ Only 50ns Blanking Time – OVM Circuit Can also be Used for Dynamic RDS,on Measurement

Presenter
Presentation Notes
10mA of Measuremenrt Current
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● Clamping Diode for Limiting the On-State Voltage Measurement (OVM) to  2V  
● Subtraction of the SiC Diode Forward Voltage Drop for High Accuracy  (2mV) 

Accurate On-State Voltage Measurement  

■ Only 50ns Blanking Time – OVM Circuit Can also be Used for Dynamic RDS,on Measurement
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■ Switching w/ and w/o 100pF Parallel Low-Loss SMD Multilayer Ceramic Chip Capacitor (450V)
■ dv/dt Measured in 10%…90% of Turn-off Voltage, Behavior @ at Low dv/dt Still to be Clarified 

● Measurement of Energy Loss per Switch and Switching Period
● GaN Enhancement Mode Power Transistor (600V, 70mΩ@25°C) 
● Antiparallel CREE SiC Schottky Freewheeling Diode  (600V, 3.3A)

ZVS Loss Measurement Results (1)
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● Analysis of a Permanently-Off Half-Bridge Excited with Switch Node Voltage 
● Measurement of Energy Loss per Switch and Switching Period

■ Heating Indicates Losses in the Permanently-Off Devices 
■ Losses Comparable to the Losses of the Switching Half Bridge for Same dv/dt

ZVS Loss Measurement Results (2)
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● Analysis of a Permanently-Off Half-Bridge Excited with Switch Node Voltage 
● Measurement of Energy Loss per Switch and Switching Period

■ Heating Indicates Losses in the Permanently-Off Devices 
■ Losses Comparable to the Losses of the Switching Half Bridge for Same dv/dt

ZVS Loss Measurement Results (2)

Presenter
Presentation Notes
IEEE Journal of Emerging and Selected Topics in Power Electronics

Special Issue on Resonant and Soft-Switching Techniques with Wide Bandgap Devices
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Measurement of 
Ferrite Multi-Airgap Core

“Mystery” Losses  



Multi-Airgap Inductor
● Ferrite E-Core with 50 x 0.3mm Thick Stacked Plates as Center Post
● Power Loss of TCM Inductors Sign. Higher than Expected 

■ Analysis by Shows Up to Factor 10 High Core Losses (!) “Mystery” Losses

56/92



● 1964 - E. Stern & D. Temme     Machining / Compressive Stress 
Changes BH-Loop of NiZn Ferrite

57/92

– Machining Increases Core Losses

● 1974 - J. Knowles, E. Snelling    Compressive Stress Incr. 
Loss Fact., Reduces μ, 

● 1984 - E. Klokholm & H. Wolfe   40 μm Magn. Dead Surface 
Layer of MnZn Ferrite

● 1987 - S. Chandrasekar et al.      Lapping Causes Greater Residual Stress than Grinding 



Ferrite Machining Process
● Cutting of Thin Plates from Ferrite Rod with Diamond Saw
● Abrasive Machining Introduces Mech. Stress into Surface

■ Ferrite Properties in Surface Altered  Increase of Loss Factor

58/92

Diamond Blade
5000rpm

Machined
Core

SEM Image of 
Machined  MnZn 

Ferrite (3F4)



● Focused Ion Beam (FIB) Cut into Ferrite (3F4) Sample & Scanning Electron Microscopy (SEM)  
● Polishing of Surface with Grain Sizes  2400 SiC  4000 SiC  Colloidal Silica SiO2

■ Polishing Removes 500μm  of Surface   Bulk Material Exposed
■ Bulk Ferrite also Exhibits Cavities  Result of (Imperfect) Sintering Process

59/92

Subsurface Condition of Machined Ferrite



Thermometric Surface Loss Measurement  
● Impression of Homogeneous Sin. Flux Density of Desired Ampl. / Frequ.
● Cap. Series Comp. for Lowering Impedance @ High Frequencies
● Measurement of Transient Temp. Change Calcul. of Losses 

■ Temperature Rise of ΔT= 1.5°…5°C Sufficient (Accuracy ±0.2°C), Fast Measurement (!)
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Sample A
Sample B



Test Fixture / Magnetic Circuit
● E-Type Fixture for Swift Installation of Diff. Samples (7mm x 6.4mm x 21.6mm)
● FEM Optimiz. of Dimensions – Large Core Cross Section / Tapered Outer Limbs

■ Therm. Insul.  & Airgap Lattice Ensure Low Heat Flux to Ambient  
■ Measurement of Temp. Increase Over Time  Allows to Verify Homog. Flux Density in Sample
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Airgap
Lattice



Identification of Therm. Parameters Rth, Cth

● DC Current Impressed in Ferrite, Voltage Control for Const. Power Dissipation as RDC=RDC(Temp.)
● Temperature Response of Sample Recorded (FLIR A655sc W with Close-Up Lens) 
● Emissivity of Ferrite Determined Using Heat Plate (ε= 0.86)

■ Rth = 37.8 K/W Can be Neglected 
■ Obtained Parameter Cth=3.83J/K Close to Cth Calc. Based on Vendor Data (Cth = 3.6J/K)
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Surface Loss Measurement Principle
● Hypothesis:  Core Loss Density in Surface Layer Higher than in Bulk
● Thinner Plates  Higher Average Losses / Faster Temp. Rise
● Stacking of Plates Does NOT Affect Temperature Rise (!)

■ Surface Loss Density  Can be Directly Calc. from Mat. Parameters / Geometry  & ΔtA and ΔtB
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Temperature Rise Recording
● Comparison of Solid 3F4 Sample (1 x 21.6mm) and Stacked Plates Sample (7 x 3mm) 
● Sinusoidal Excitation 100mT / 400kHz

■ Thermal Image shown 25 Seconds After Turn-On of Magnetic Excitation
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3F4 Solid Sample / 21.6mm

7 Plates 3F4 / 3mm



Measurement Results – Bulk Losses

● Comparison of Measurement Results and Datasheet Values, 3F4 @ 25°C
● Measurement Error Approx. ±10% (Worst Case)

■ Good Agreement with Datasheet Values / Vendor Steinmetz Parameters 
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■ Comp. of Steinmetz Parameters of Surface Losses & Bulk Losses BS > B, aS < a
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Measurement Results – Surface Losses

● Measurement Error Approx. ±25% (Worst Case)
● Error Determined by Meas. Time &  Temp. Reading Accuracy 



“Critical Thickness” of Ferrite Plates
● “Critical Thickness” Reached for Equal Losses in Bulk & Surface 
● Critical Plate Thickness is INDEPENDENT of Cross Section (!)
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■ Dependence on Flux Density Ampl. & Frequency !
■ Dependence on Material / Machining Process / Power Processing Treatment

3F4 Critical Thickness 
for 125mT / 400kHz



ηρ-Pareto Front
TCM vs. Large Ripple PMW   
The Ideal Switch is Not Enough (!)
Design Space Diversity

ηρ-Pareto 
Optimization of 

Little Box 1.0



Multi-Objective Optimization
● Detailed System Models                  Power Buffer/Output Stage/EMI Filter 
● Multi-Domain Component Models   Passives  &  GaN & SiC Semicond.
● Consideration of Very Large # of Degrees of Freedom

■ Pareto Optimization Shows Trade-Off  Between Power Density and Efficiency
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● Multi-Objective Optimization of Little-Box 1.0  (incl. CeraLink  X6S)
● Absolute Performance Limits  (I)  - DSP/FPGA Power Consumption 

(II) - Heatsink Volume @ (1-η)

■ Further Performance Improvement for Triangular Current Mode (TCM)   PWM 

Little Box 1.0 ηρ-Performance Limits

(b) CeraLink Power Pulsation Buffer
(c)  X6S         Power Pulsation Buffer

(a) Realized Prototype
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Little Box 1.0 -- TCM PWM
● Very High Sw. Frequency fS of TCM Around Current Zero Crossings  
● Efficiency Reduction due to Residual TCM Sw. Losses & Gate Drive Losses Reduction
● Wide fS -Variation Represents Adv. & Disadvantage for EMI Filter Design

■ PWM -- Const. Sw. Frequency & Lower Conduction Losses
■ PWM @ Large Current Rippel -- ZVS in Wide Intervals

(s)      Soft-Switching (ZVS) 
(p-h)  Partial Hard Switching 
(h) Hard-Switching
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● Optimization for GaN GIT  & No Interleaving
● Resulting Opt. Inductance of Output Inductor L=10μH (TCM),  L=30μH (PWM@140 kHz)

■ PWM vs. TCM  Slightly Higher Max. Power Density @ Same Efficiency

ρ= 12.5kW/dm3

η= 97.4%
ρ= 11.9kW/dm3

η= 97.4%

Little Box 1.0 -- TCM PWM
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Wichtig: Optimierung ohne Interleaving / alle Optimierungen für GaN GIT!
TCM ZVS Schaltverluste sind an sich klein, aber es treten hohe Frequenzen auf ausser im Maximum des Stromes 




● Analysis for Google Little Box Challenge Specification ΔV/V < 3%  
● Efficiency Benefit of PPB only for ρ > 9kW/dm3

Little Box 1.0 -- Electrolytic Cap. / Active PPB

■ Electrolytics Favorable for High Efficiency @ Moderate Power Density (Δη= +0.5%)
■ Electrolytics Show Lower Vol. & Lower Losses if Large ΔV/V is Acceptable (e.g. for PFC Rectifiers)
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The Ideal Switch is 
Not Enough (!)



■ Analysis of  Improvement of  Efficiency @ Given Power Density  & Maximum Power Density

Little Box 1.0 @ Ideal Switches -- TCM
● Multi-Objective Optimization of Little-Box 1.0  (X6S Power Pulsation Buffer)
● Step-by-Step Idealization of the Power Transistors
● Ideal Switches:  kC= 0 (Zero Cond. Losses); kS= 0 (Zero Sw. Losses)

Zero Output Cap.
and Zero Gate 
Drive Losses
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■ Analysis of  Improvement of  Efficiency @ Given Power Density  & Maximum Power Density

Little Box 1.0 @ Ideal Switches -- PWM
● Multi-Objective Optimization of Little-Box 1.0  (X6S Power Pulsation Buffer)
● Step-by-Step Idealization of the Power Transistors
● Ideal Switches:  kC= 0 (Zero Cond. Losses); kS= 0 (Zero Sw. Losses)

Zero Output Cap.
and Zero Gate 
Drive Losses
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Little Box 1.0 @ Ideal Switches -- PWM

■ L &  fS are Independent Variables (Dependent for TCM)
■ Large Design Space Diversity (Mutual Compensation of HF and LF Loss Contributions)





ρ= 6kW/dm3

η≈ 99.35%

L = 50uH 
fS= 500kHz  or  900kHz
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Die vorne angegebenen optimalen Werte schwanken aufgrund dieser Diversivität und sind daher nicht notwendigerweise monoton!
 



Little Box 2.0
DC/│AC│Converter + Unfolder
PWM vs. TCM incl. Interleaving       
ηρ-Pareto Limits for Non-Ideal Switches
Preliminary Exp. Results 
Final 3D-CAD

250 W/in3



■ vAC1, vAC2 More Diff. to Gen. but Add. DOF
■ Higher Sw. & Gate Drive Losses
■ Zero Low-Frequ. CM-Noise (DC Comp. Only)
■ CCM Not Limited by Allowed Gnd Current

■ vAC1 More Difficult to Generate/Control
■ Lower Conduction Losses
■ Higher CM-Noise (DC and n x 120Hz-Comp.)
■ CCM=150nF Allowed for 50mA Gnd Current

● Alternative Converter Topology  Only Single HF Bridge Leg + 60Hz-Unfolder
● DC/│AC│- Buck Converter + Full-Bridge Unfolder  OR HF Half-Bridge & Half-Bridge Unfolder
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Little Box 2.0 -- New Converter Topology (1)

Presenter
Presentation Notes
-     vAC1 is difficult to generate/control
	=> Output voltage distortion during zero crossing since vAC1 can not be ramped up as fast as vAC2
	=> if vAC2 is also switched at zero crossing, 



■ vC0 Easy to Generate/Control
■ Higher Cond. Losses Due to FB-Unfolder 
■ Lower CM-Noise (DC & n x 120Hz-Comp.)
■ CCM=700nF Allowed for 50mA Gnd Current

■ vAC1 More Difficult to Generate/Control
■ Lower Cond. Losses
■ Higher CM-Noise (DC and n x 120Hz-Comp.)
■ CCM=150nF Allowed for 50mA Gnd Current

● Alternative Converter Topology  Only Single HF Bridge Leg + 60Hz-Unfolder
● DC/│AC│- Buck Converter + Full-Bridge Unfolder  OR HF Half-Bridge & Half-Bridge Unfolder
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Little Box 2.0 -- New Converter Topology (2)

Presenter
Presentation Notes
-     vAC1 is difficult to generate/control
	=> Output voltage distortion during zero crossing since vAC1 can not be ramped up as fast as vAC2
	=> if vAC2 is also switched at zero crossing, 



Little Box 2.0 -- New Converter Topology (3)
● Alternative Converter Topology - DC/│AC│- Buck Converter + Unfolder
● 60Hz-Unfolder (Temporary PWM for Ensuring Cont. Current Control)
● TCM  or  PWM of  DC/│AC│- Buck-Converter

■ Full Optimization of All Converter Options for Real Switches / X6S Power Pulsation Buffer
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Little Box 2.0 -- Multi-Objective Optimization 
● DC/│AC│- Buck Converter (Single PWM Bridge Leg) + Unfolder Shows Best Performance
● Full-Bridge Would Employ 2 Switching Bridge Legs - Larger Volume & Losses
● Interleaving Not Advantageous – Lower Heatsink Vol. / Larger Vol. of Switches and Inductors

■ ρ= 250W/in3 (15kW/dm3) @ η= 98% Efficiency Achievable for Full Optimization



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Wenn 2 Zweige takten bei TCM, habe bei zwei Zweigen minimalen Strom! - nachteilig




3D-CAD Construction
of the Final System

250 W/in3



Little Box 2.0 -- Mechanical Construction (1)

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

PPB Capacitor
Output Filter
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■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

PPB Capacitor

Heat Sink + Fans

Output Filter
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Little Box 2.0 -- Mechanical Construction (2)



■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

PPB Capacitor

Inductors
(Buck-Stage &
Unfolder)

Heat Sink + Fans

Output Filter
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Little Box 2.0 -- Mechanical Construction (3)



PPB Capacitor

Heat Sink + Fans

Power Board

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

Inductors
(Buck-Stage &
Unfolder)

Output Filter
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Little Box 2.0 -- Mechanical Construction (4)



Control Board

PPB Capacitor

Heat Sink + Fans

Power Board

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

Inductors
(Buck-Stage &
Unfolder)

Output Filter
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Little Box 2.0 -- Mechanical Construction (5)



Control Board

Little Box 2.0 -- Demonstrator

Heat Sink + Fans

Power Board

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

Inductors
(Buck-Stage &
Unfolder)

Output Filter
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240 W/in3

PPB Capacitor



Control Board

PPB Capacitor

Heat Sink + Fans

Power Board

■ 60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 ) 14.8 kW/dm3 (243 W/in3)

Inductors
(Buck-Stage &
Unfolder)

PPB Capacitor
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Little Box 2.0 -- Demonstrator 240 W/in3



Control Block Diagram 
Output Voltage / Input Current Quality
Efficiency

Experimental 
Results



Little Box 2.0 – Control Structure

■ Each Stage (Buck & Unfolder) Controlled with Cascaded Current and Voltage Loop
■ Without Switching of Unfolder Control Like for Conventional Boost PFC Rectifier
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● Voltage Zero Crossing Behavior With (Right) & Without (Left) Switching of Unfolder

■ Output Voltage & Current Fully Controlled Around Voltage Zero Crossings 
■ Slope of Buck Conv. Outp. Curr. can be Decreased – Adv. for React. Loads (No Step-Change of DC Curr.)

Output Voltage  (200V/div)
Output Current  (10 A/div)                 
Buck Inductor Current  (10A/div)        
Unfolder Output Voltage (200V/div)
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Little Box 2.0 – Experimental Results (1)



■ Capacitive Load

● DC/|AC| Buck-Stage Output Voltage & Inductor Current

■ Inductive Load■ Resistive Load
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Little Box 2.0 – Experimental Results (2)



● Performance of First DC/│AC│- Buck Converter + Unfolder Prototype
● PWM Operation
● Without Power Pulsation Buffer

■ 98% for Res. Load Achievable if Cond. Losses of PCB (Copper Cross Sect.) & Unfolder (Rds,on) are Red.
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Little Box 2.0 – Experimental Results (3)



■ 70…300 W/in3

■ 35 kHz … 500kHz… 1 MHz (up to 1MHz: 3 Teams)
■ Full-Bridge or  DC/ AC  Buck Converter + Unfolder 
■ Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
■ GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

● 18 Finalists (3 No-Shows)    
● 7 Groups of Consultants / 7 Companies / 4 Universities

Litte Box 2.0  – Performance Comparison  

@ Rated Power

(1) Virginia Tech
(2) Schneider Electric
(3) EPRI (Univ. of Tennessee)
(4) Venderbosch
(5) Energy Layer
(6) ETH Zurich
(7) Rompower
(8) Tommasi-Bailly
(9) Red Electric Devils
(10) AHED
(11) FH IISB
(12) Univ. of Illinois
(13) AMR

Note: Numbering of 
Teams is Arbitrary.  .
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Source: whiskeybehavior.info

Overall
Summary



Performance Limits / Future Requirements  

● New Integr. Control Circuits and i=0 Detection for Sw. Frequency >1MHz   
● Integrated Gate Drivers & Switching Cells
● High Frequency Low Loss Magnetic Materials
● High Bandwidth Low-Volume Current Sensors
● Low Loss Ceramic Capacitors Tolerating Large AC Ripple
● Passives w. Integr. Heat Management and Sensors
● 3D Packaging 

● New U-I-Probes Required for Ultra-Compact Conv. R&D
● Specific Systems for Testing  Devices Equipped with Integr. Measurement Functions
● Convergence of  Sim. & Measurem. Tools  Next Gen. Oscilloscope
● New Multi-Obj. Multi-Domain Simulation/Optim. Tools 

● 220…250W/in3 for Two-Level Bridge Leg + Unfolder 
● 250…300W/in3 for Highly Integrated Multi-Level Approach 
● Isol. Distance Requirements Difficult to Fulfill
● Fulfilling Industrial Inp. Overvoltage Requirem. would Signific. Reduce Power Density

● Low Frequency (20kHz…120kHz) SiC  vs.  HF (200kHz…1.2MHz) GaN
● Multi-Cell Concepts for LV Si (or GaN) vs. Two-Level SiC (or GaN)
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Thank  You!



Questions





► Key Importance of Technology Partnerships of Academia & Industry

■ Commoditization / Standardization
■ Extreme Cost Pressure (!)

Future Development  1/2

“There is Plenty of..
Room at the Bottom”

“There is Plenty of. 
Room at the Top”  Medium Voltage/Frequency 

Solid-State Transformers  

Power-Supplies on Chip 

Presenter
Presentation Notes
 



Power MOSFETs & IGBTs
Microelectronics

Circuit Topologies
Modulation Concepts

Control Concepts

Super-Junct. Techn. / WBG
Digital Power

Modeling &  Simulation

2025
2015

►
►

►
►

SCRs / Diodes 
Solid-State Devices

Future Development 2/2

“Passives”
Adv. Packaging

η-ρ-σ-Design of Converters & “Systems”
Measurement Technologies

Paradigm
Shift

■

■ Extrapolation of Technology S-Curve

!

Presenter
Presentation Notes
Reluctance Topologies / Magnetic Paths Topologies



 Advanced Packaging (!)  Moore's Law       

■ WBG Semiconductor Technology  Higher Efficiency, Lower Complexity
■ Microelectronics  More Computing Power

Technology Progress – Technology Push

+



■ Metcalfe's Law

System / Smart Grid Drivers



– Moving form Hub-Based Concept
to Community Concept Increases
Potential Network Value 
Exponentially (~n(n-1)  or
~n log(n) )

ValueSource:
Pixabay



► Sensitivity to Technology Advancements
► Trade-off Analysis

Technology Sensitivity Analysis 
Based on η-ρ-Pareto Front



Converter Performance Evaluation 
Based on η-ρ-σ-Pareto Surface

► σ: kW/$



Converter Performance Evaluation 
Based on η-ρ-σ-Pareto Surface

► ´Technology Node´

►



- AC and DC Distribution  
- Single Converter vs. Combination of Modules / Cells  
- Initial Costs / Life Cylce Cost Trade-off
- Grid 4.0

Systems

- Standardized Very Low Cost Building Blocks
- “Application Specific” = Wide Operating Range Standardized Blocks
- Self-Parametrization
- Bidirectional Converters

Converters

“Devices” - Minimize / Avoid Packages  (PCB) Embedding
- Integrate Driver Stage
- Integrate Sensors / Monitoring
- Multiple Use of Isolated Gate Drive Communication Channel
- Offer Test Devices with Integrated Measurement Function
- Facilitate (Double Sided) Heat Extraction

Literature - More & More “White Noise”

Design - Minimize Design Time / Fully Computerized
- Maximize Design Flexibility for Appl. Specific Solution (PCB) 
- Maximize Design Insight for Trade-off Analysis
- Design for Manufacturing  (Planar / PCB Based)

Future Development   
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