

Novel Gate Driver for Normally-off SiC JFET and General High Temperature SiC Converter Technology

<u>Benjamin Wrzecionko</u>, Dominik Bortis and Johann W. Kolar Power Electronic Systems Laboratory, ETH Zurich, Switzerland www.pes.ee.ethz.ch

Outline

Novel Gate Driver for Normally-off SiC JFET

- SiC normally-off 1200 V JFET
- Existing Gate Driver Concepts
- Novel Gate Driver
- Experimental Results

General High Temperature SiC Converter Technology

- High Ambient Temperature Inverter System
- High Temperature Current Measurement
- High Temperature Fan

SiC Normally-off JFET

SiC Normally-off JFET (SemiSouth)		
V _{DS,BD}	1200 V	
I _{D,cont}	30 A	
R _{DS,on}	50 mΩ	
A _{chip}	9 mm ²	

Specific Gate Driver Requirements – On-State

Specific Gate Driver Requirements – On-State

Junction Temperature (°C)

Specific Gate Driver Requirements – Switching

- Turn-on and -off: ± 15 V for fast charging of $R_{GS}C_{GS}$ -circuit
- C_{GD} is up to a factor of 10 higher for the JFET

SiC JFET vs. SiC MOSFET (1200V, 20 A @ 175 °C)

Specific Gate Driver Requirements – Off-State

High C_{GD} reinforces the Miller-Effect

Turn-on of low side switch

Specific Gate Driver Requirements – Off-State

Turn-on off low side switch

Power Electronic Systems Laboratory

Specific Gate Driver Requirements – Off-State

- Low V_{GS,th} requires negative bias
- Limited to 15 V due to leakage currents (2 mA)

Specific Gate Driver Requirements – Summary

- Voltage and current levels:
 - Turn-on: V_{GS} = +15 V
 - Turn-off: V_{GS} = -15 V
 - Off-state: V_{GS} = -15 V (during converter operation) and fast removal of Miller charge
 - On-state: $I_{\rm G}$ = 300 mA, $V_{\rm GS}$ = 2.5 V for $I_{\rm D}$ = 10 A @ 175 °C
 - $I_{\rm G}$ = 100 mA for 10% higher $R_{\rm DS,on}$

Standard requirements:

- Wide operating frequency range
- Arbitrary duty cycles
- Conventional control with 1 signal per switch
- Low circuit complexity and cost

State-of-the-Art Gate Drivers

Two-stage gate drivers

- + Required voltage and current levels
- Significant power loss in R₂ and additional IC required

- + Required voltage and current levels
- Significant power loss in DC-DC conv. & additional ICs required

AC coupled gate driver

- + Required voltage and current levels
- Significant power loss in R_{CL}
- No fast removal of Miller charge
- Duty cycle limitations due to discharge of $C_{\rm BP}$
- 1) SemiSouth Laboratories, Application Note AN-SS1, 2009
- 2) Kelley, Improved Two-Stage DC-Coupled Gate Driver for Enhancement-Mode SiC JFET, 2010
- 3) SemiSouth Laboratories, Application Note AN-SS1, 2009

Novel AC Coupled Gate Driver

Eliminating week points of conventional AC coupled driver by:

- 2 Zener diodes and 4 Schottky diodes
- Adjustment of supply voltage levels:
 - $V_{\rm CC} \approx 4 \, \rm V$
 - *V*_{EE} ≈ -25 V

• $V_{\rm CC} \approx 4 \text{ V} \Rightarrow \text{very small power loss in } R_{\rm DC}$

 $R_{\rm GD} + R_{\rm DC} \approx 1 \,\Omega$ $V_{\rm D,DC} \approx 0.3 \,V$ $I_{\rm RD,DC} \approx 3 \,\rm mA$

- $V_{\text{EE}} \approx -25$ V and $V_{Z,D3} \approx 15$ V $\Rightarrow C_{\text{AC}}$ is charged to 10 V
- Low-impedance path for charging $C_{AC} \Rightarrow$ no duty cycle limitations

 $C_{\rm AC} \approx 6 \, \rm nF$ $V_{\rm D,AC} \approx 0.2 \, \rm V$

Only small leakage currents flowing

Miller charge can flow into C_{GS} (negative bias) and gate driver

• Voltage across C_{AC} adds to $V_{CC} \Rightarrow V_{GS} \approx 14 \text{ V}$

 $C_{\rm AC} \approx 6 \, \rm nF$ $R_{\rm AC} \approx 0 \, \Omega$

16

14

12

10

8

4

2

0

-2

-4

6

4

Current (A) 6

Novel Gate Driver – Experimental Results

- **Testing scenarios:**
 - 4 chips in parallel (symmetrical setup important for balanced currents)
 - Various drain currents, faster turn-off with higher I_{D}
 - T_1 up to 225 °C (30% slower turn-on at 225 °C)
 - Switching frequencies up to 50 kHz

Novel Gate Driver – Switching waveforms

Switching times for 600 V and 8 A:

Turn-on: 30 ns (20 kV/μs)

Turn-off: 20 ns (30 kV/µs)

Novel Gate Driver – Experimental Verifications

Outline

- Novel Gate Driver for Normally-off SiC JFET
 - SiC normally-off 1200 V JFET
 - Existing Gate Driver Concepts
 - Novel Gate Driver
 - Experimental Results
- General High Temperature SiC Converter Technology
 - High Ambient Temperature Inverter System
 - High Temperature Current Measurement
 - High Temperature Fan

High Ambient Temperature Inverter System (1/2)

DC-AC 3-ph Inverter System Specifications:

- Ambient Temperature: T_A = 120 °C
- Switching frequency: f_{SW} = 50 kHz
- Output frequency: f = 1000 Hz
- Output power: P = 10 kW
- DC link voltage: V_{DC} = 700 V

High Ambient Temperature Inverter System (2/2)

- ① Ambient air intake
- 2 Peltier heat sink
- ③ Switches heat sink

- (4) Heat input to signal PCB
- 5 Horizontal heat transfer
- 6 Heat output of box by Peltier Cooler

Fast High Temperature Isolated DC and AC Current Measurement

Parameter	Value	Unit
Max. T _A for Sensor	250	°C
Max. T_A for Signal Electronics	120	°C
Measurement Range	-50 +50	А
Measurement Frequency	50	kHz
Max. Error	< 1	%

High Temperature Fan for Power Electronics Cooling (1/2)

- *T*_{max} = 250 °C
- n = 19'000 rpm
- *P*_{in} = 15 W
- DC supply voltage: 12 V

High Temperature Fan for Power Electronics Cooling (2/2)

Summary

Novel Gate Driver for Normally-off SiC JFET

- Detailed analysis of gate driver requirements of normally-of SiC JFET
- Evaluative comparison of gate driver concepts
- Presentation of novel AC coupled gate driver
 - Fast switching
 - Wide operating frequency range
 - Arbitrary duty cycles
 - Low circuit complexity and cost

General High Temperature SiC Converter Technology

- 120 °C Ambient Temperature Inverter System
- 250 °C Fast Isolated DC and AC Current Measurement up to ±50 A
- 250 °C High Performance Fan for Power Electronics Cooling

Thank you for your interest.

Please ask your questions!

