

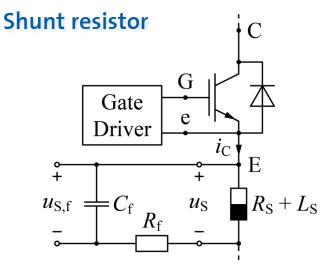
Voltage, Current and Temperature Measurement Concepts Enabling Intelligent Gate Drives

<u>Yanick Lobsiger</u>, Johann W. Kolar Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch | lobsiger@lem.ee.ethz.ch

Motivation

Intelligent Gate Drive

- Digital control unit (FPGA, CPLD, DSP) with computing power close to the power semiconductor
 - Programmable output characteristics [Hemmer2009]
 - Advanced control (di_c/dt, du_{CE}/dt) [Kuhn2008]
 - Extended and adjustable protection functionality (short-circuit, over-current, overvoltage-limiting, health monitoring, ...)
 - Extensive communication possibilities (digital transmission bus with control unit)


Need for measurements

- Integratable in gate driver, external circuits and IGBT; typ. without galvanic isolation
- Current measurement concepts
 - Collector current: *i*_c
 - Collector current slope: di_c/dt
- Voltage measurement concepts
 - Collector-Emitter voltage: u_{CE}
 - Collector-Emitter on-state voltage: u_{CE,on}
 - Collector-Emitter voltage slope: du_{CE}/dt
- Temperature measurement concepts
 - Junction temperature: T_i

InPower digital gate driver

$$u_{\rm S}(t) \approx R_{\rm S} \cdot i_{\rm C}(t) + L_{\rm S} \cdot di_{\rm C}(t)/dt$$

$$u_{\mathrm{S},\mathrm{f}}(t) = R_{\mathrm{S}} \cdot i_{\mathrm{C}}(t) \quad (\text{for } R_{\mathrm{f}} \cdot C_{\mathrm{f}} = L_{\mathrm{S}} / R_{\mathrm{S}})$$

(–)

- Losses: $P_{\rm L} \approx R_{\rm S} \cdot i_{\rm C}^2$
 - Low losses = low amplitude resolution
 - Temperature drift
- Parasitic (commutation) inductance L_s
 - Accurate compensation needed

Semikron Semitrans® IGBT module with integrated shunts

Infineon MIPAQ[™] IGBT module with integrated shunts (in the output phases)

(+)

- Simple, cheap, passive (low noise & low disturbance)
- Possibility of integration in IGBT module (Infineon MIPAQ[™], Semikron Semitrans[®]) or busbar (well dissipated losses)
- DC & AC measurement u_{s,f}(t) ~ i_c(t) (high bandwidth due to compensation of L_s)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

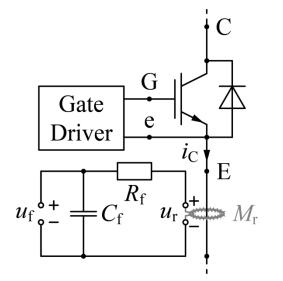
Current sense IGBT (split-cells: n_s / n_{tot})

 $u_{s}(t) = R_{s} \cdot i_{s}(t)$ $\approx R_{s} \cdot i_{c}(t) \cdot n_{s} / n_{tot}$

(typ.: $n_{\rm s} / n_{\rm tot} = 1/100 \dots 1/1000$)

(–)

- High accuracy = low resolution
 - Small R_s is needed for right scaling
- Cost, rarity
 - Only few types available
 - Often no alternatives

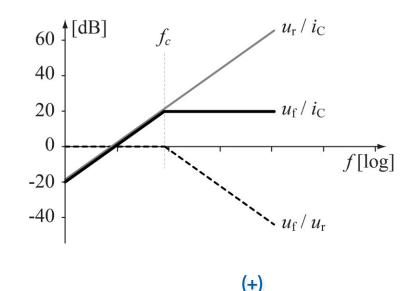

Mitsubishi Electric IGBT module with integrated current sense IGBT and corresponding terminals

(+)

- Simple, passive (low noise & low disturbance)
- Integrated in IGBT module (Fuji Electric, Mitsubishi Electric)
- High bandwidth
- AC & DC measurement: $u_s(t) \sim i_c(t)$
- Low losses

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

Rogowski coil (passive integration)

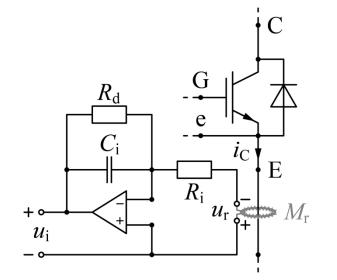


 $u_{\rm r}(t) = M_{\rm r} \cdot {\rm d}i_{\rm C}(t)/{\rm d}t$

(-)

- No DC current measurement (high lower bandwidth f_c)
- Typ. too low amplitude resolution
- Signal integration needed

Amplitude characteristic of $u_r / i_c \mid u_f / u_r \mid u_f / i_c$


- Simple, cheap, passive (low noise & low disturbance)
- High upper bandwidth (typ. f_u > 50 MHz)
- Integration in PCB / IPEM possible
- High freq. AC measurement: $u_r(t) \sim i_c(t)$
- Low losses
- Isolated, no saturation effects
- No additional commutation inductance

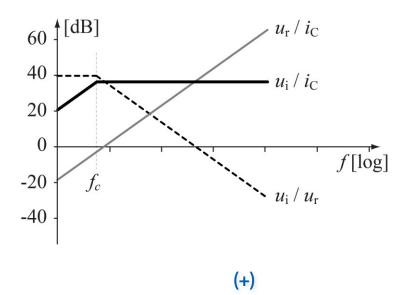
Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

Power Electronic Systems Laboratory

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Rogowski coil (activeintegration)

 $u_{i}(t) \approx M_{r} / (R_{i} \cdot C_{i}) \cdot i_{C}(t)$ (for $f_{iC} > f_{c}$)


Active (noise)

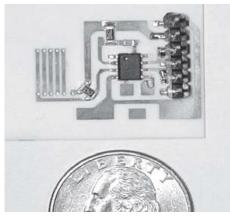
- Parasitic effects of operational amplifier
 - Bias current, offset voltage (*R*_d avoids DC-drift)

(-)

- Limited gain-bandwidth-product
- Limited lower bandwidth f_c, no DC

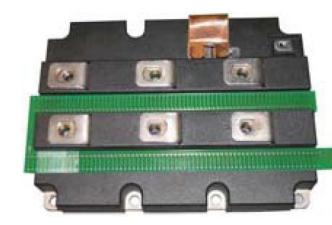
Amplitude characteristic of $u_r / i_c \mid u_i / u_r \mid u_i / i_c$

- Simple, cheap
- High upper bandwidth (typ. f_u > 50 MHz)
- Small lower bandwidth (typ. *f*_c < 50 Hz)</p>
- Integration in PCB / IPEM possible
- Low to high freq. AC measurement: $u_i(t) \sim i_c(t)$
- Low losses
- Isolated, no saturation effects
- No additional commutation inductance


Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

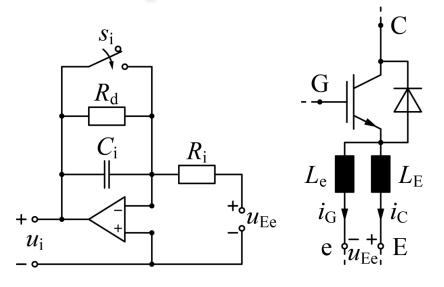
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Integration of Rogowski coil to


- IPEM
- PCB

[Xiao2OO3] Prototype of IPEM embedded Rogowski coil sensor

[Bortis2008] PCB integrated Rogowski coils around single screwed terminals



[Bortis2008] PCB integrated Rogowski coil around multiple screwed terminals

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

IGBT bonding inductance

 $u_{\rm Ee}(t) = -L_{\rm E} \cdot di_{\rm C}(t) / dt + L_{\rm e} \cdot di_{\rm G}(t) / dt$ $u_{\rm i}(t) \approx (L_{\rm E} \cdot i_{\rm C}(t) - L_{\rm e} \cdot i_{\rm G}(t)) / (R_{\rm i} \cdot C_{\rm i})$

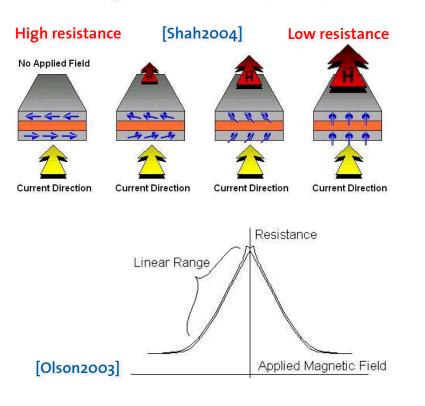
 s_i is used to minimize the influence of i_G (s_i closed during the gate current transients, i.e. before the switching transients of i_C)

(-)

- Auxiliary (kelvin) emitter terminal needed
- Dependency on gate current
 - Resettable integrator circuit beneficial
 - Parasitic effects of operational amplifier & switch
 - Bias current, offset voltage (R_d or s_i to avoid DC-drift)
 - Limited gain-bandwidth-product
 - Limited lower bandwidth f_c, no DC measurement
 - Parasitic inductance *L*_E integrated in IGBT module
 - Depencency on tolerances of manufacturing process for accurate measurements without calibration

(+)

Simple, cheap

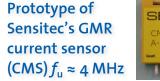

- High upper bandwidth (typ. f_u > 50 MHz)
- Small lower bandwidth (typ. f_c < 50 Hz)</p>
- Parasitic inductance L_E integrated in IGBT module
 - no sensing hardware needed
- Low to high freq. AC measurement: $u_i(t) \sim i_c(t)$
- Low losses
- No additional commutation inductance

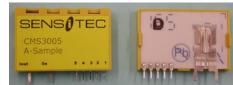
Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

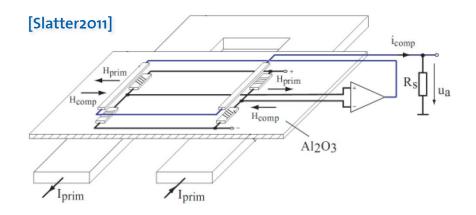
Power Electronic Systems Laboratory

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

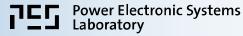

Giant Magnetoresistive (GMR) Sensor

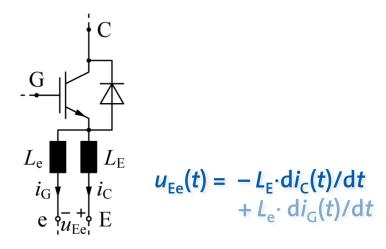

(+)


- DC to AC current measurement
- Possibility of integration to IPEM
- Low losses

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

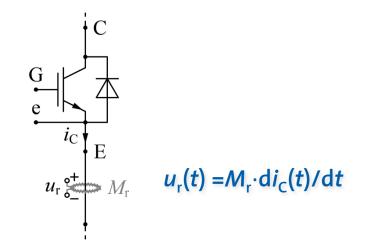



(-)

- Additional commutation inductance
- Limited upper bandwidth (cf. Rogowski coil)
 - Sensitec CMS series: $f_u \approx 4 \text{ MHz}$
- Active (noise)
- Evaluation & compensation circuit needed

Current derivative measurement: di_c/dt

Bonding inductance


(+)

- Simple, cheap, no sensing hardware needed
- Accurate (direct signal measurement)

(-)

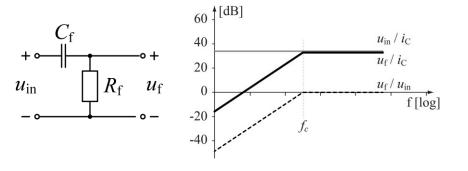
- Auxiliary (kelvin) emitter terminal needed
- Dependency on manufacturing process

Rogowski coil

(+)

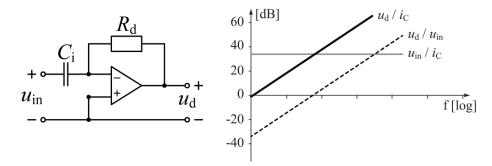
- Simple, cheap
- Accurate (direct signal measurement)

(-)


- Rogowski coil needed
- Dependency on stray field

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich


Current derivative measurement: di_c/dt

Passive derivation of current signal u_{in}

 $u_{\rm f}(t) = a \cdot du_{\rm in}(t)/dt = b \cdot di_{\rm C}(t)/dt \quad (\text{for } f_{\rm in} < f_{\rm c})$

Active derivation of current signal u_{in}

 $u_{\rm d}(t) = a \cdot \mathrm{d}u_{\rm in}(t)/\mathrm{d}t = b \cdot \mathrm{d}i_{\rm C}(t)/\mathrm{d}t$

(+)

- Simple, cheap
- Passive (low noise)

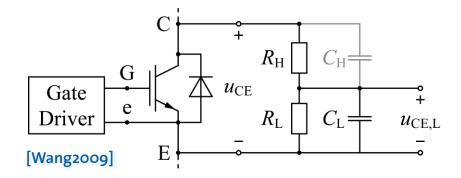
(-)

- Indirect measurement (derivation)
- Low amplitude resolution
- High amplitude = low bandwidth

(+)

- Simple, cheap
- High amplitude

(-)


- Indirect measurement (derivation)
- Active (noise)
- High amplitude = high noise

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

Voltage measurement: *u*_{CE}

Compensated passive voltage divider

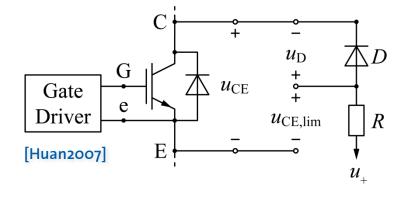
$$u_{\rm CE,L}(t) = R_L / (R_{\rm H} + R_L) \cdot u_{\rm CE}(t)$$

 $(\text{for } C_{\text{L}} = C_{\text{H}} \cdot R_{\text{H}} / R_{\text{L}})$

(+)

- Simple, cheap
- Passive (low noise)
- High bandwidth, adjustable gain

(-)


- Additional IGBT output capacitance
- Blocking voltage of R_H is about u_{CE,max}

Typ. no additional capacitor $C_{\rm H}$ needed as the parasitic capacitances of $R_{\rm H}$ and the PCB layout are high enough for compensation with $C_{\rm L}$

- Minimal possible output capacitance
- High impedance

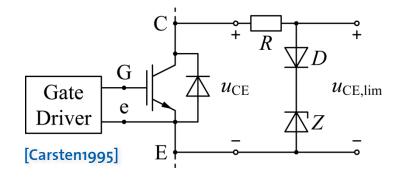
Voltage measurement: *u*_{CE,on}

Decoupling diode D

(-)

- Offset u_D in measured voltage u_{CE,lim}
- Dependency of u_D on
 - Temperature T_D
 - Current *i*_D
- High blocking voltage of diode D needed (about u_{CE,max})

 $u_{\text{CE,lim}}(t) = u_{\text{CE}}(t) + u_{D,f} \quad (\text{for } u_{\text{CE}} < u_{+} - u_{D,f})$ $u_{\text{CE,lim}}(t) = u_{+} \quad (\text{for } u_{\text{CE}} >= u_{+} - u_{D,f})$


- Voltages of u_{CE} above u₊ u_{D,f} are clipped by diode D that is then in blocking state
- Compensation of u_{D,f} is needed if the exact value of u_{CE,on} is needed

(+)

- Simple, cheap
- Passive (low noise)
- High bandwidth

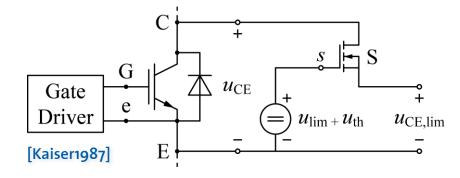
Voltage measurement: *u*_{CE,on}

Limiting Z-diode

(-)

- Low bandwidth (Z and D conducting before v_{CE} drops below v_Z + v_{D,f})
 - Charge recovery of diodes
 - Low-pass of *R* and diode's capacitances
- High voltage rating for R (about u_{CE,max})

 $u_{\text{CE,lim}}(t) = u_{\text{CE}}(t) \qquad (\text{for } u_{\text{CE}} < u_Z + u_{D,f})$ $u_{\text{CE,lim}}(t) = u_Z + u_{D,f} \qquad (\text{for } u_{\text{CE}} >= u_Z + u_{D,f})$


 Voltages of u_{CE} above u_Z + u_{D,f} are clipped by Z-diode Z and diode D

(+)

- Simple, cheap
- Passive (low noise)
- No offset voltage in u_{CE,lim}
- Low blocking voltages of D & Z needed

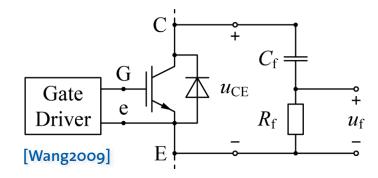
Voltage measurement: *u*_{CE,on}

Parallel switch S

$u_{\text{CE,lim}}(t) = \min(u_{\text{CE}}(t), u_{\text{lim}})$

When s = 1 then: $u_{CE,lim} = u_{CE,on}$

(+)

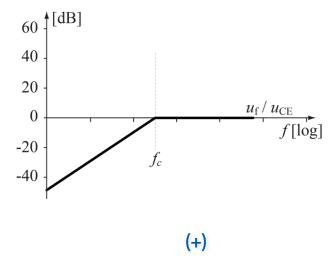

- Direct connection when switch is closed (s = 1) (low noise)
- No offset voltage in u_{CE,lim}

(-)

- Switch S needs same blocking voltage as IGBT (about u_{CE,max})
- Separate switching signal s needed
 - Derived passively by u_{CE} [Kaiser1987]
 - Provided by digital control unit
- Limited bandwidth due to delayed switching of S

Voltage derivative measurement: du_{CE}/dt

Passive derivation of voltage signal u_{CE}



 $u_{\rm f}(t) \approx R_{\rm f} \cdot C_{\rm f} \cdot {\rm d} u_{\rm CE}(t)/{\rm d} t$

(for $u_f \ll u_{CE}$ and $f \lt fc$:

- (i) $du_{Cf}/dt \approx du_{CE}/dt$
- (ii) $i_{\rm Cf} = C_{\rm f} \cdot du_{\rm Cf}/dt$
- (iii) $u_{\rm f} = R_{\rm f} \cdot i_{\rm Cf}$)

Amplitude characteristic

- Simple, cheap
- Passive (low noise)
- Low gain needed (allows high bandwidth)

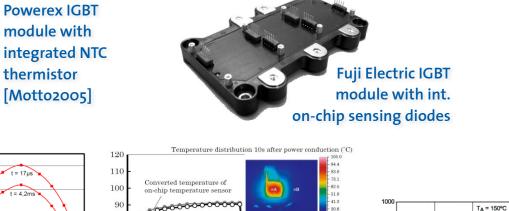
(-)

- Additional IGBT output capacitance
- Voltage rating of C_f is U_{CE,max}
- Good linearity of C_f required

Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

NTC thermistor: $R_t = f(T)$

On-chip integration

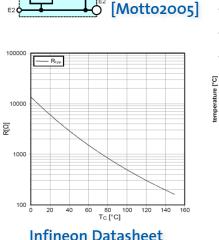

NC

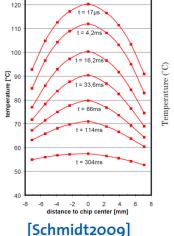
RTC

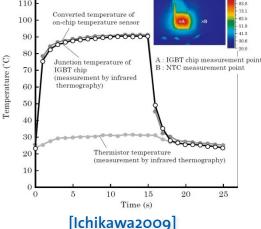
- Distance to IGBT cell
- Typ. resolution: $R_t / T \approx 10 k\Omega / 200$ °C

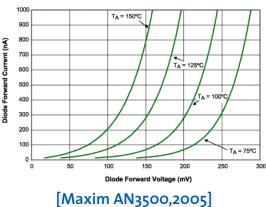
Sensing pn-diode: $v_f = f(T, i_f)$

- On-chip integration
 - Arranged directly next to IGBT cell
- Typ. resolution v_f / T ≈ 1.7 mV / °C

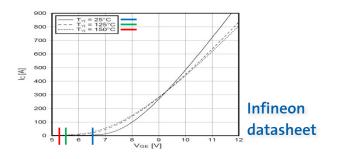




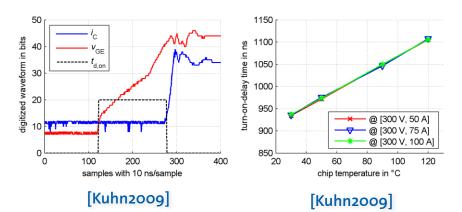

EO


GO-

SO

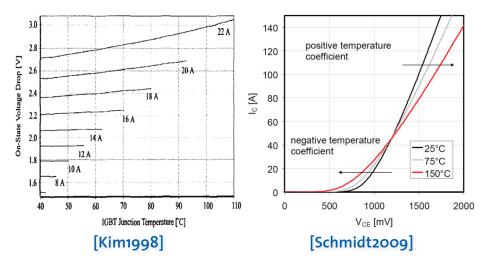

Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

Power Electronic Systems Laboratory


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Gate driving characteristic:

 T_j = f(v_{GE,th}) - resolution: typ. 1 V /100 °C (depending on IGBT)



 f(t_{d,on}, t_{d,off}) - resolution: typ. < 2ns / °C (depending on IGBT & gate current)

IGBT output characteristic: $T_i = f(i_C, v_{CE,on})$

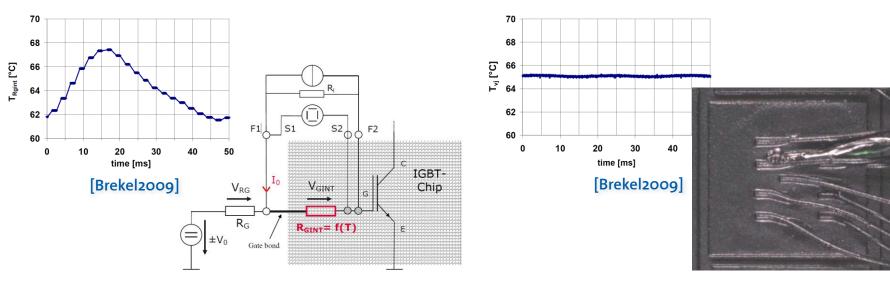
 Need for and dependency on *i*_C & *v*_{CE,on} measurements

- Evaluation by DSP / FPGA in interpolated 3D-table
- Not usable around the crossover-point between positive and negative temperature coefficient, that is typ.
 - above nominal current for PT IGBTs
 - well below nominal current for NPT IGBTs

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

Temperature measurement: T_i


Internal gate resistor: $T_j = f(R_{G,int})$

- Integrated in IGBT module
 - No additional sensor needed
 - Very small distance to IGBT junction
 - Connection to int. gate terminal needed
- Low temperature dependency of R_{G,int}
 - Positive temp. coefficient
 - Precise acquisition system needed

Thermocouple (e.g. Pt100)

- Glued on the IGBT chip
 - Glue with low thermal impedance needed
 - Location close to IGBT chip center
- Large time constant of thermocouple (≈ 200 ms)
 - Switching transients of T_i can not be measured
- High accuracy for T_{j,avg} measurement

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich

Literature

[Bortis2008]	D. Bortis, J. Biela and J. W. Kolar, "Active gate control for current balancing of parallel-connected IGBT modules in solid-state modulators," IEEE Transactions on Plasma Science, vol. 36, no. 5, pp. 2632—2637, Oct. 2008.
[Brekel2009]	W. Brekel, Th. Duetemeyer, G. Puk and O. Schilling, "Time resolved in situ Tvj measurements of 6.5kV IGBTs during inverter operation," Proc. of the Power Conversion Intelligent Motion Conf. (PCIM Europe), pp. 808—813, 2009.
[Carsten1995]	B. Carsten, "A "clipping pre-amplifier" for accurate scope measurement of high voltage switching transistor and diode conduction voltages," Proc. of the 31 st Int. Power Conversion Electronics Conf. and Exhibit, pp. 335—342, 1995.
[Huan2007]	F. Huang and F. Flett, "IGBT fault protection based on di/dt feedback control," Proc. of the Annual IEEE Power Electronics Specialists Conf. (PESC), pp. 1478—1484, 2007.
[Ichikawa2009]	H. Ichikawa, T. Ichimura and S. Soyano, "IGBT modules for hybrid vehicle motor driving," Fuji electric review, vol. 55, no. 2, pp. 46— 50, 2009.
[Kaiser1987]	K. Kaiser, "Untersuchung der Verluste von Pulswechselrichterstrukturen mit Spannungszwischenkreis und Phasenstromregelung," Diss. Vienna Univ. of Tech., pp. 41—45, 1987.
[Kim1998]	YS. Kim and SK. Sul, "On-line estimation of IGBT junction temperature using on-state voltage drop," Proc. of the 33 rd IEEE Industry Applications Society Annual Meeting (IAS), pp. 853—859, 1998.
[Kuhn2009]	H. Kuhn and A. Mertens, "On-line junction temperature measurement of IGBTs based on temperature sensitive electrical parameters," Proc. of the 13 th European Conf. on Power Electronics and applications (EPE), 2009.
[Motto2005]	E. R. Motto and J. F. Donlon, "New compact IGBT modules with integrated current and temperature sensors," Powerex technical library, 2005.
[Musumeci2002]	S. Musumeci, R. Pagano, A. Raciti, G. Belverde and A. Melito, "A new gate circuit performing fault protections of IGBTs during short circuit transients," Proc. of the 37 th IEEE Industry Applications Society Annual Meeting (IAS), pp. 2614—2621, 2002.
[Olson2003]	E. R. Olson and R. D. Lorenz, "Integrating giant magnetoresistive current and thermal sensors in power electronic modules," Proc. of the 18 th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), pp. 773–777, 2003.
[Schmidt2009]	R. Schmidt and U. Scheuermann, "Using the chip as a temperature sensor – the influence of steep lateral temperature gradients on the Vce(T)-measurement," Proc. of the 13 th European Conf. on Power Electronics and applications (EPE), 2009.
[Shah2004]	H. N. Shah, Y. Xiao, T. P. Chow, R. J. Gutmann, E. R. Olson, SH. Park, WK. Lee, J. J. Connors, T. M. Jahns and R. D. Lorenz, "Power electronics modules for inverter applications using flip-chip on flex-circuit technology," Proc. of the 39 th IEEE Industry Applications Society Annual Meeting (IAS), pp. 1526—1533, 2004.
[Slatter2011]	R. Slatter, J. Schmitt and G. von Manteuffel, "Highly dynamic current sensors based on magnetoresistive (MR) technology," Proc. of the Power Conversion Intelligent Motion Conf. (PCIM Europe), pp. 616—620, 2011.
[Wang2009]	Y. Wang, P. R. Palmer, A. T. Bryant, S. J. Finney, M. S. Abu-Khaizaran and G. Li, "An analysis of high-power IGBT switching under cascade active voltage control," IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 861—870, Mar. / Apr. 2009.
[Xiao2003]	C. Xiao, L. Zhao, T. Asada, W. G. Odendaal and J. D. van Wyk, "An overview of integratable current sensor technologies," Proc. of the 38 th IEEE Industry Applications Society Annual Meeting (IAS), pp. 1251—1258, 2003.

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

