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Motivation 

Intelligent Gate Drive 

 

 Digital control unit (FPGA, CPLD, DSP) 
with computing power close to the  
power semiconductor 

 Programmable output characteristics 
[Hemmer2009] 

 Advanced control (diC/dt, duCE/dt) 
[Kuhn2008] 

 Extended and adjustable protection 
functionality (short-circuit, over-current, 
overvoltage-limiting, health monitoring, …) 

 Extensive communication possibilities 
(digital transmission bus with control unit) 

 

Need for measurements  

 Integratable in gate driver, external circuits 
and IGBT; typ. without galvanic isolation 

 

 Current measurement concepts 

 Collector current: iC 

 Collector current slope: diC/dt 

 

 Voltage measurement concepts 

 Collector-Emitter voltage: uCE 

 Collector-Emitter on-state voltage: uCE,on 

 Collector-Emitter voltage slope: duCE/dt 

 

 Temperature measurement concepts 

 Junction temperature: Tj 
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InPower digital gate driver 



Shunt resistor 
 

 

 

 

 

 

 
 

uS(t) ≈ RS·iC(t)  +  LS · diC(t)/dt 
 

uS,f(t) = RS·iC(t)      (for Rf· Cf = LS / RS) 

Current measurement: iC 
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(–) 

 Losses: PL ≈ RS · iC
2 

 Low losses = low amplitude resolution 

 Temperature drift 

 Parasitic (commutation) inductance LS 

 Accurate compensation needed 

(+)  

 Simple, cheap, passive  
(low noise & low disturbance) 

 Possibility of integration in IGBT module 
(Infineon MIPAQ™, Semikron Semitrans®) 
or busbar (well dissipated losses) 

 DC & AC measurement uS,f(t) ~ iC(t) 
(high bandwidth due to compensation of LS) 

 

 

Infineon MIPAQ™ IGBT module 

with integrated shunts 

(in the output phases) 

Semikron Semitrans® 

IGBT module with  

integrated shunts 



Current measurement: iC 
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(–) 

 High accuracy = low resolution 

 Small RS is needed for right scaling 

 Cost, rarity  

 Only few types available 

 Often no alternatives 

(+)  

 Simple, passive 
(low noise & low disturbance) 

 Integrated in IGBT module 
(Fuji Electric, Mitsubishi Electric) 

 High bandwidth 

 AC & DC measurement: uS(t) ~ iC(t) 

 Low losses 

 

 

Mitsubishi Electric IGBT module with integrated 

current sense IGBT and corresponding terminals 

Current sense IGBT  
(split-cells: nS / ntot) 

 

 

 

uS(t)  =  RS·iS(t) 

 ≈  RS·iC(t) ·nS /ntot 

 

(typ.: nS /ntot = 1/100 … 1/1000) 



Current measurement: iC 

Rogowski coil (passive integration) 

 

 

 

 

 

 

 

 

 

ur(t) = Mr·diC(t)/dt 
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Amplitude characteristic of  ur / iC  |  uf / ur  |  uf / iC 

 

 

 

(-) 

 No DC current measurement 
(high lower bandwidth fc) 

 Typ. too low amplitude resolution 

 Signal integration needed 

(+) 

 Simple, cheap, passive 
(low noise & low disturbance) 

 High upper bandwidth (typ. fu > 50 MHz) 

 Integration in PCB / IPEM possible 

 High freq. AC measurement: ur(t) ~ iC(t) 

 Low losses  

 Isolated, no saturation effects 

 No additional commutation inductance 

 

 



Current measurement: iC 

Rogowski coil (activeintegration) 

 

 

 

 

 

 

 

 

 

ui(t) ≈ Mr / (Ri·Ci) ·iC(t)        (for fiC > fc) 
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Amplitude characteristic of  ur / iC  |  ui / ur  |  ui / iC 

 

 

(-) 

 Active (noise) 

 Parasitic effects of operational amplifier 

 Bias current, offset voltage (Rd avoids DC-drift) 

 Limited gain-bandwidth-product 

 Limited lower bandwidth fc, no DC 

(+) 

 Simple, cheap 

 High upper bandwidth (typ. fu > 50 MHz) 

 Small lower bandwidth (typ. fc < 50 Hz) 

 Integration in PCB / IPEM possible 

 Low to high freq. AC measurement: ui(t) ~ iC(t) 

 Low losses  

 Isolated, no saturation effects 

 No additional commutation inductance 

 

 



Current measurement: iC 

Integration of Rogowski coil to 

 IPEM 

 PCB 
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[Xiao2003]  

Prototype of IPEM embedded 

Rogowski coil sensor 

[Bortis2008]  

PCB integrated Rogowski coils 

around single screwed terminals 

[Bortis2008]  

PCB integrated Rogowski coil 

around multiple screwed terminals 



Current measurement: iC 

IGBT bonding inductance 

 

 

 

 

 

 

 

 

 

uEe(t) = -LE·diC(t)/dt  
 

ui(t) ≈ (LE·iC(t)  ) / (Ri·Ci) 

 
si is used to minimize the influence of iG 

(si closed during the gate current transients, 
i.e. before the switching transients of iC) 
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(-) 

 Auxiliary (kelvin) emitter terminal needed 

 Dependency on gate current 

 Resettable integrator circuit beneficial 

 Parasitic effects of operational amplifier & switch 

 Bias current, offset voltage (Rd or si to avoid DC-drift) 

 Limited gain-bandwidth-product 

 Limited lower bandwidth fc, no DC measurement 

 Parasitic inductance LE integrated in IGBT module 

 Depencency on tolerances of manufacturing process 
for accurate measurements without calibration 

 

 (+) 

 Simple, cheap 

 High upper bandwidth (typ. fu > 50 MHz) 

 Small lower bandwidth (typ. fc < 50 Hz) 

 Parasitic inductance LE integrated in IGBT module 

 no sensing hardware needed 

 Low to high freq. AC measurement: ui(t) ~ iC(t) 

 Low losses  

 No additional commutation inductance 

 

 



Current measurement: iC 

Giant Magnetoresistive (GMR) Sensor 
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(-) 

 Additional commutation inductance 

 Limited upper bandwidth (cf. Rogowski coil) 

 Sensitec CMS series: fu ≈ 4 MHz 

 Active (noise) 

 Evaluation & compensation circuit needed 

(+) 

 DC to AC current measurement 

 Possibility of integration to IPEM 

 Low losses 

 

Prototype of 

Sensitec’s GMR 
current sensor 
(CMS) fu ≈ 4 MHz 

High resistance Low resistance [Shah2004]  

[Olson2003]  

[Slatter2011]  



Current derivative measurement: diC/dt 

Bonding inductance 

 

 

 

 

 

 uEe(t) =  – LE·diC(t)/dt 
  

 

 

(+) 

 Simple, cheap, no sensing hardware needed 

 Accurate (direct signal measurement) 

 

(-)  

 Auxiliary (kelvin) emitter terminal needed 

 Dependency on manufacturing process 

 

 

Rogowski coil 

 

 

 

 

 

 ur(t) =Mr·diC(t)/dt 

 

 

(+) 

 Simple, cheap 

 Accurate (direct signal measurement) 

 

(-)  

 Rogowski coil needed 

 Dependency on stray field 
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Current derivative measurement: diC/dt 

Passive derivation of current signal uin 

 

   

 

 

 

  
uf(t) = a · duin(t)/dt = b · diC(t)/dt   (for fin < fc)

 

 

(+) 

 Simple, cheap 

 Passive (low noise) 

 

(-)  

 Indirect measurement (derivation) 

 Low amplitude resolution 

 High amplitude = low bandwidth 

 

   

Active derivation of current signal uin 

 

   

 

 

 

  
ud(t) = a · duin(t)/dt = b · diC(t)/dt

 

 

(+) 

 Simple, cheap 

 High amplitude 

 

(-)  

 Indirect measurement (derivation) 

 Active (noise) 

 High amplitude = high noise 
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Compensated passive voltage divider 

 

   

 

 

 

 

uCE,L(t) = RL / (RH + RL) ∙ uCE(t) 
 
(for CL = CH ∙ RH / RL) 

 

 
Typ. no additional capacitor CH needed as the parasitic capacitances of RH and the PCB layout are 
high enough for compensation with CL 

 Minimal possible output capacitance 

 High impedance 

 

 

 

 
 

   

Voltage measurement: uCE 

 

 
(+) 

 Simple, cheap 

 Passive (low noise) 

 High bandwidth, adjustable gain 

 

 

(-)  

 Additional IGBT output capacitance 

 Blocking voltage of RH is about uCE,max 
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[Wang2009]  



Decoupling diode D 

 

   

 

 

 
 
 
 

 

(-)  

 Offset uD in measured voltage uCE,lim 

 Dependency of uD on 

 Temperature TD 

 Current iD 

 High blocking voltage of diode D needed 
(about uCE,max) 

 
 

   

Voltage measurement: uCE,on 

 
 

uCE,lim(t) = uCE(t) + uD,f     (for uCE < u+ - uD,f) 

uCE,lim(t) = u+      (for uCE >= u+ - uD,f) 

 

 

 Voltages of uCE above u+ - uD,f are clipped by 
diode D that is then in blocking state 

 Compensation of uD,f is needed if the  
exact value of uCE,on is needed 

 

(+) 

 Simple, cheap 

 Passive (low noise) 

 High bandwidth 
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[Huan2007]  



Limiting Z-diode 

 

   

 

 

 
 
 
 

(-)  

 Low bandwidth (Z and D conducting 
before vCE drops below vZ + vD,f) 

 Charge recovery of diodes 

 Low-pass of R and diode’s capacitances 

 High voltage rating for R (about uCE,max) 

 
 

 

 

 
 

   

Voltage measurement: uCE,on 

 
 

uCE,lim(t) = uCE(t)      (for uCE < uZ + uD,f) 

uCE,lim(t) = uZ + uD,f  (for uCE >= uZ + uD,f) 

 

 Voltages of uCE above uZ + uD,f are clipped by 
Z-diode Z and diode D  
 
 

 

(+) 

 Simple, cheap 

 Passive (low noise) 

 No offset voltage in uCE,lim 

 Low blocking voltages of D & Z needed 

14 

Y. Lobsiger | 2011/06/30 @ ECPE Workshop Munich 

[Carsten1995]  



Parallel switch S 

 

   

 

 

 
 
 
 

(+) 

 Direct connection when switch is 
closed (s = 1) (low noise) 

 No offset voltage in uCE,lim 

 

 

 

 
 

   

Voltage measurement: uCE,on 

 
 

uCE,lim(t) = min(uCE(t),ulim)   

 

When s = 1 then: uCE,lim = uCE,on 
 

 

 

 

(-)  

 Switch S needs same blocking voltage 
as IGBT (about uCE,max) 

 Separate switching signal s needed 

 Derived passively by uCE [Kaiser1987] 

 Provided by digital control unit 

 Limited bandwidth due to delayed 
switching of S 
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[Kaiser1987]  



Voltage derivative measurement: duCE/dt 

Passive derivation of voltage signal uCE 

 

   

 

 

 

 

uf(t) ≈ Rf ∙ Cf ∙ duCE(t)/dt 
 

(for uf << uCE and f < fc: 
 
 (i)   duCf/dt ≈ duCE/dt  

 (ii)  iCf = Cf ∙ duCf/dt 

 (iii) uf = Rf ∙ iCf) 

 
 

   

Amplitude characteristic 

 

 

 

 

 

 

 

 

 
(+) 

 Simple, cheap 

 Passive (low noise) 

 Low gain needed (allows high bandwidth) 

 

(-)  

 Additional IGBT output capacitance 

 Voltage rating of Cf is uCE,max 

 Good linearity of Cf required 
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[Wang2009]  



NTC thermistor: Rt = f(T) 
 On-chip integration 

 Distance to IGBT cell 

 Typ. resolution: Rt / T ≈ 10kΩ / 200 ºC 

Temperature measurement: Tj 

Sensing pn-diode: vf = f(T,if) 
 On-chip integration 

 Arranged directly next to IGBT cell 

 Typ. resolution vf / T ≈ 1.7 mV / ºC  
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[Ichikawa2009]  

 

           Fuji Electric IGBT 

module with int. 

on-chip sensing diodes 

 

Fuji Electric 

[Ichikawa2009]  

 

Powerex IGBT  

module with  

integrated NTC 

thermistor  

[Motto2005] 

[Maxim AN3500,2005]  

 

Infineon Datasheet 

 

 

[Schmidt2009]  

 

[Motto2005] 



Temperature measurement: Tj 

Gate driving characteristic: 
 Tj = f(vGE,th) - resolution: typ. 1 V /100 ºC  

(depending on IGBT) 

 

 

 

 

 

 

 

 f(td,on, td,off) - resolution: typ. < 2ns / ºC  
(depending on IGBT & gate current) 

  

IGBT output characteristic: Tj = f(iC, vCE,on) 
 Need for and dependency on 

iC & vCE,on measurements 

 

 

 

 

 

 

 

 

 
 
 

 Evaluation by DSP / FPGA in  
interpolated 3D-table 

 Not usable around the crossover-point 
between positive and negative temperature 
coefficient, that is typ. 

 above nominal current for PT IGBTs 

 well below nominal current for NPT IGBTs 
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[Schmidt2009]  

 

[Kim1998]  

 

[Kuhn2009]  

 

[Kuhn2009]  

 

Infineon 

datasheet 

 



Temperature measurement: Tj 

Internal gate resistor: Tj = f(RG,int)  
 Integrated in IGBT module 

 No additional sensor needed 

 Very small distance to IGBT junction 

 Connection to int. gate terminal needed  

 Low temperature dependency of RG,int 

 Positive temp. coefficient 

 Precise acquisition system needed 

Thermocouple (e.g. Pt100) 
 Glued on the IGBT chip  

 Glue with low thermal impedance needed 

 Location close to IGBT chip center 

 Large time constant of thermocouple 
(≈ 200 ms) 

 Switching transients of Tj can not be measured 

 High accuracy for Tj,avg measurement 

 Opening of IGBT module needed 
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[Brekel2009] 

 

 

[Brekel2009] 
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