

Power Electronic Systems Laboratory

Research Vectors in Power Electronics and Motion Control

Johann W. Kolar

Power Electronic Systems Laboratory ETH Zurich, Switzerland

Agenda ETH Zurich

Dept. of Inform. Tech. and Electrical Eng. Power Electronic Systems Lab.

ETH zürich

Founded 1855

• Driving Force of Industrialization in Switzerland

ETH Zurich Today

- One of the Leading International Universities for technology and the Natural Sciences
- Place of Study, Research and Employment for Approximately 29,000 People from over 110 Different Countries

ETH Research and Education

- Excellent Education
- Ground-Breaking Fundamental Research
- Putting New Findings into Practice

Two Main Locations in Zurich

- Historic Main Building in the Heart of Zurich, Built by Gottfried Semper
- Modern Campus on the Outskirts of the City, in Hönggerberg, which Links Science, the Business World and the General Public

Additional Locations in Switzerland

- Basel: Department of Biosystems Science and Engineering (D-BSSE)
- Lugano: Swiss National Supercomputing Center (CSCS)
- Other Decentralized Entities
- Research Facility in Singapore
 - Singapore ETH Centre for Global Environmental Sustainability (SEC)

ETH Zurich, Zentrum

ETH Zurich, Hönggerberg

Globally Networked with Leading Universities

- International Cooperation in Research and Education
- Partnerships with Leading Universities (IDEA League, IARU, GlobalTech, UNITECH etc.)

21	Nobel Prizes
413	Professors
6240	T&R Staff
2	Campuses
136	Labs
35%	Int. Students
110	Nationalities
36	Languages
150 th	Anniv. in 2005

Departments of ETH Zurich

A

RCH	Architecture
BAUG	Civil, Environmental and Geomatics Eng.
BIOL	Biology
SSE	Biosystems
HAB	Chemistry and Applied Biosciences
RDW	Earth Sciences
ESS	Humanities, Social and Political Sciences
IEST	Health Sciences, Technology
NFK	Computer Science
TET	Information Technology and Electrical Eng.
1ATH	Mathematics
1ATL	Materials Science
1AVT	Mechanical and Process Engineering
ITEC	Management, Technology and Economy
PHYS	Physics
JSYS	Environmental Systems Sciences

► Research @ D-ITET

Four Core Research Areas

Energy Electronics and Photonics Information and Communication Biomedical Engineering

Students & Staff

650 B.Sc. Students300 M.Sc. Students400 Ph.D. Students27 Professors

Energy Research Cluster @ **D-ITET**

Energy Research Cluster @ **D-ITET**

Power Electronic Systems Laboratory (PES)

Competence *

ETH zürich

PES Research Scope

- Airborne Wind Turbines

- Micro-Scale Energy Systems
 Wearable Power
 Exoskeletons / Artificial Muscles
 Hybrid Systems
 Pulsed Power

Actuators / EL. Machines

PES Industry Collaboration

General Research Approach

Power Electronic Systems Laboratory

Power Electronics Converters Performance Trends

Abstraction of Power Converter Design

ETH zürich

Technology Sensitivity Analysis Based on η-ρ-Pareto Front

Sensitivity to Technology Advancements Trade-off Analysis

ETH zürich

Example of Recent Research Results in Power Electronics The Google Little Box Challenge

Requirements Grand Prize System

- Design / Build the 2kW 1- Φ Solar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

Push the Forefront of New Technologies in R&D of High Power Density Inverters

- Design / Build the 2kW 1-⊕ Solar Inverter with the Highest Power Density in the World
 Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C EMI FCC Part 15 B

Push the Forefront of New Technologies in R&D of High Power Density Inverters

- Highest Power Density (> 50W/in³)
 Highest Level of Innovation

- Timeline
 - Challenge Announced in Summer 2014
 - 650 Teams Worldwide
 - 100+ Teams Submitted a Technical Description until July 22, 2015
 - 15 Finalists / Presentation @ NREL on Oct. 21, 2015, Golden, Colorado, USA
 Testing @ NREL, Colorado, USA / Winner will be Announced in Early 2016

Compliant to All Specifications (!)

14.8in³ (243 cm³) 96,3% Èfficiency @ 2kW 95.07% Weighted Efficiency T_=58°C @ 2kW

 $\Delta u_{\rm DC}$ = 1.1% $\Delta i_{\rm DC}^{\rm c} = 2.8\%$ THD+N_U = 2.6% $THD + N_{T} = 1.9\%$

88.7mm x 88.4mm x 31mm

New Technologies

- Cascaded Control for Active Power Pulsation Buffer
- **TCM** Modulation \rightarrow Active ZVS in Whole Operating Range
- 4D Interleaving of 2 Bridge Legs per Phase
- 20ns Delay / 500kV/us Gate Drive for 600V IFX Norm.-Off GaN GIT
 Q=800 / Multi-Micro-Airgap HF Inductor w. Multi-Layer Foil Winding
 CSPI=34W/(dm³K) Heatsink also Employed as EMI Shield

Compliant to All Specifications (!)

🛨 135 W/in³

14.8in³ (243 cm³) 96,3% Èfficiency @ 2kW 95.07% Weighted Efficiency T_=58°C @ 2kW

 $\Delta u_{\rm DC}$ = 1.1% $\Delta i_{\rm DC}^{\rm c} = 2.8\%$ THD+N_U = 2.6% $THD + N_{T} = 1.9\%$

88.7mm x 88.4mm x 31mm

New Technologies

- Cascaded Control for Active Power Pulsation Buffer
- **TCM** Modulation \rightarrow Active ZVS in Whole Operating Range
- 4D Interleaving of 2 Bridge Legs per Phase
- 20ns Delay / 500kV/us Gate Drive for 600V IFX Norm.-Off GaN GIT
 Q=800 / Multi-Micro-Airgap HF Inductor w. Multi-Layer Foil Winding
 CSPI=34W/(dm³K) Heatsink also Employed as EMI Shield

Power Pulsation Buffer

- Employs Large Voltage Fluctuation Capacitor & DC/DC Buck Converter Stage
- High Energy Density Ceramic Capacitors (CeraLink)
- New Multi-Loop Cascaded Control Structure

• Measurement Results

• System Complies to All Specifications (!)

New 4D Interleaving Combined with Active ZVS TCM Modulation

Today's and Future Motion Control Systems

Development of Motion Control Systems

James Watt's Steam Engine

Nikola Tesla's AC Induction Machine

Integrated Drive System (AC Motor + SkiN IGBT Power Electronics) for Today's Electric Vehicles

Exponential Development

- < 1900 Mechanical
 - 1900 Mechanical + Electrical
 - 1950 Mechanical + Electrical + Electronic → Electronic Motion Control
 - 1975 Mechanical + Electrical + Electronic + Computation → MECHATRONICS
 - 1985 Mechanical + Electrical + Electronic + Computation + Information/Communication

Future Innovation in Motion Control Systems

Key Components are Today Available with High Performance

Extremely Wide Application Areas

- Machining
- Handling and Assembly
- Transportation (land, sea, air)
- Gas, Oil and Mining
- Water, Wastewater
- Consumer Electronics
- Computers
- Home Appliances
- Defense
- Medical
- Space Exploration

1st Option for Gaining Competitive Advantage: Further Optimize the «Component»

e.g. Ultra-High Speed Machines, Ultra-Efficient Converter, ...

ETH zürich

2nd Option for Gaining Competitive Advantage: Target Future Mechatronic Systems

- Target «System Level» and have Competences to Bridge the Boundaries between > 3 Key Areas
- Opens Path to Endless Product Innovation → «Multiplication by Infinity»

Electrical Drives: Performance Trends

Compact & Lightweight Drives Power Electronics & Integration Fault Tolerant Systems Minimum Energy/Cost in Manufacturing High Accuracy & Dynamics Extreme Ambient Conditions

ETH zürich

Electrical Drives: Performance Trends

Compact & Lightweight Drives

Power Electronics & Integration Fault Tolerant Systems Minimum Energy/Cost in Manufacturing High Accuracy & Dynamics Extreme Ambient Conditions

Requirements for Electric Transportation Systems

In-Wheel Drives for Electric Vehicles

- High Controllability
- Better Vehicle Response
- More Free Space in the Vehicle
- Very Tight Space Constraints

•	$P_{\rm nom}$	54	kW
•	n _{max}	1400	r/min
•	D _{out}	420	mm
•	Lax	56	mm
•	m _{tot}	31	kg (incl. Inverter)

- More Electric, Hybrid, All Electric Aircraft
 - Reduced Fuel Costs
 - Silent Propulsion
 - Low-Weight Electrical Machines (Propulsion Motor, Gas Turbine Driven Generator)
 - $P_{\rm nom}$ 260 kW (η = 95%)
 - n_{max} 2500 r/min
 - *D*_{out} 418 mm
 - *l*_{ax} 300 mm
 - *m*_{tot} 50 kg (incl. Prop. Bearing)

ETH zürich

ETH zürich

Pushing Conventional Motors to the Limit

- Analysis & Optimization of Advanced Machine Topologies
- Comprehensive Multiphysics Machine Models (Electromagnetic, Mechanical, Thermal)
- Multi-Objective Pareto-Optimization to find Optimal Design Parameters

► Increasing the Machine Utilization Factor (1)

Degrees-of-Freedom for Improved Utilization

- Manufacturing Methods
- Materials
- Cooling
- Cast coils:
 - + Very High Filling Factor
 - + Low-Cost
 - + Aluminum or Copper
 - + High Power Densities
 - High-Frequency Losses

► Increasing the Machine Utilization Factor (2)

- Degrees-of-Freedom for Improved Utilization
 - Manufacturing Methods
 - Materials
 - Cooling

ETH zürich

- Soft magnetic composites (SMC):

- + 3-D Electrical Insulation
- + Low Eddy-Current Losses
- + Transversal- or Axial-Flux Machines
- Mechanical Strength
- Low Magnetic Permeability

Source: gkn.com

Source: Bauer, Kleimaier Observer Based Sensorless Predictive Hysteresis Control of a Transverse Flux Machine

► Increasing the Machine Utilization Factor (2)

Industry Trend: High Rotational Speed for High Compactness

Ultra-High-Speed Drives have Numerous Applications Across Industries

- 1) Mechanical Power $P_{\rm m} = \omega T$
- 2) Machine Torque $T = C L D^2$

Ultra-High-Speed Micro-Machining Applications

- Rotational Speed: 250'000 1'000'000 r/min
 - Smaller Feature Size (µ-vias for Consumer Electronics)
 - Higher Precision in Manufacturing
 - Accelerated Manufacturing Process
 - Higher Productivity

High-Speed Turbocompressor for Portable Fuel Cell

- Reduced Weight/Volume
- Increased Pressure Ratio

Commercially available compressors		
Speed (r/min)	280 000	18 000
Pressure Ratio	1.6	1.4
Mass Flow (g/s)	15	15
Weight (kg)	0.6	4

ETH zürich

Ultra-Compact Turbocompressor for «Solar Impulse»

Cabin Pressurization in Solar-Powered All-Electric Aircraft

• Compact Machine Design with 150 W, 150'000 r/min

High-Speed Air-to-Power Systems

■ Local Electric Power Generation from Compressed Air of Pneumatic Supply

- Supply of Compressed Air Already in Place for Pneumatic Components
- Robust Air Hose Instead of Electrical Wiring
- Compressed Air Input 3..8 bar
- Electrical Power Output 100 W
- Ultra Compact Design 20 x 50 mm

Magnetic Design of Ultra-High-Speed Drives

Magnetic Design is Key Challenge at High Rotational Speed

44/116 -

Rotor Design Challenges at Ultra-High-Speeds

Rotor Dynamics

- Bending Modes Limit Maximum Speed
- Rigid-Body Modes Within Operation
- Stresses due to Centrifugal Force
 - Metallic or Composite Sleeve Needed
 - Tight Tolerances for Interference Fit

Advanced Bearing Systems for Ultra-High-Speed-Drives (1)

Lifetime of Ball Bearings Limits Rotational Speed of Electric Machine

Advanced Bearing Systems for Ultra-High-Speed-Drives (2)

Lifetime of Ball Bearings Limits Rotational Speed of Electric Machine

► World Record Magnetic Bearing with 500'000 r/min

 Demonstration of Active Magnetic Bearing Concept at World-Record Speed of 500'000 r/min

48/116 -

1'000'000 r/min- World Record Drive System

- Demonstration of Machine Design Principles by 100 W / 1'000'000 r/min Drive System
 - P_{loss} 9 W (excl. Bearings) D_{rotor} 3 mm •
 - •

Exploring the Limits: 29'000'000 r/min Electric Drive

- Demonstrator System for Highest Recorded Rotational Speed for Electric Machines
 - Development of Novel Control Concepts for Ultra-High Speed
 - Material Testing at Highest Centrifugal Acceleration

Application-Specific Machine Concepts (1)

Optimization of Machine Design for Application Specific Requirements

Lateral-Stator Machine Concept

- Novel Actuator Topology
- Direct Drive
- 3 x Higher Local Torque Density

■ 2/3-D Numeric Analysis and Optimization

Application-Specific Machine Concepts (2)

Optimization of Machine Design for Application Specific Requirements

Lateral-Stator Machine Concept

- Novel Actuator Topology
- Direct Drive
- 3 x Higher Local Torque Density

Topology-Specific Integrated Position Sensor

- Compact Realization
- Load Independent

MEMS Brushless-DC Micromotor

- Main Application: Watch Industry
- Stator Manufactured in Clean Room (CMOS Technology)
- **310 nW at 300 r/min**
- **42% Efficiency (Open-Loop Drive)**

Stator Coil Structure

Permanent Magnet

MEMS BLDC (Top View)

Piezoelectric Positioning for Optical Systems

- High-Precision Positioning and/or Sensing
- High-Frequency (Ultrasonic) Vibration Control

Nano-Meter Position Control with Piezo-Stack

cedrat-technologies.com

Electrical Drives: Performance Trends

Compact & Lightweight Drives Power Electronics & Integration

Fault Tolerant Systems Minimum Energy/Cost in Manufacturing High Accuracy & Dynamics Extreme Ambient Conditions

P_{nom}

V_{DC}

 $f_{\rm out}$ $f_{\rm sw}$

Highest Compactness by Integration

6-Phase Open-Windings Machine with

kHz

30 kW

125 V

0 - 500 Hz

50

for Motor & Inverter

Full Bridges using DirectFET

Shorter Connections betw. ComponentsCommon Housing and Cooling System

► Integration of Power Electronics & Electrical Machine (1)

303.5 mm

Control / Car interface

Inverter

Rotor Cooling

Phase PCB

Machine

80 mm

240 mm

- + Fault Tolerant Design
- Number of Power Switches

56/116 -

► Integration of Power Electronics & Electrical Machine (2)

Highest Compactness by Integration

- Shorter Connections betw. Components
- Common Housing and Cooling System for Motor & Inverter

■ 3-Phase Si-IGBT Inverter in p²pack-Technology

- S_{nom} 32 kVA • V_{in} 700 V • f_{out} 0 - 800 Hz
- *f*_{sw} 20 kHz

► Si Power Semiconductors

Source: Dr. Miller / Infineon / CIPS 2010

- **Past Disruptive Changes**
- IGBT
- Trench & Field-Stop Superjunction Technology - MOSFET

WBG Power Semiconductors

■ Utilization of Excellent Properties → Main Challenges in Packaging (!)

WBG Power Semiconductors

- **Disruptive Change**
- Extremely Low R_{DS(on)} Very High T_{j,max} Extreme Sw. Speed

- **Utilization of Excellent Properties** \rightarrow Main Challenges in Packaging (!)

WBG Power Semiconductors

Application Perspectives

Source: Dr. Honea PEDG 2013

transphorm

What Yole Developement showed in 2011 as future view

Power Electronic Systems _____ Laboratory

- Source: Panasonic ISSCC 2014
- GaN 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology
- 9 Dual-Gate Normally-Off Gate-Injection Bidirectional Switches
- DBM Gate Drive Transmitter Chip & Isolating Dividing Couplers
- Extremely Small Overall Footprint 25 x 18 mm² (600V, 10A 5kW Motor)

Moore's Law: Key Enabler for Advanced Mechatronics

Micro-Controllers with Ever-Higher Signal Processing Capability

- Advanced Control Algorithms (e.g. Model Predictive Control)
- Image Recognition in Robotic Applications
- Fast-Closed Loop Control for High-Bandwidth Systems

Improved Computer-Aided Design Methods

- Finite-Element-Method Evaluation of Designs
- Fully Virtual Prototyping and Multi-Physics Evaluation before Hardware Realization

Electrical Drives: Performance Trends

Compact & Lightweight Drives Power Electronics & Integration Fault Tolerant Systems

Minimum Energy/Cost in Manufacturing High Accuracy & Dynamics Extreme Ambient Conditions

Self-Sensing High-Reliability Drive Systems

Elimination of the Position Sensor

- Increased Reliability
- Compact & Cost Effective
- Additional Signal Processing
- Challenging for Certain Machine Types

Smart Tooth Concept for Fault Tolerant Machines

Smart Tooth Concept

- Stator Segment
- Power Electronics
- Control Electronics
- Higher Power Density
- Fault Tolerance
- Higher Efficiency
- Lower Cost

Source: Brockerhoff et. al. Highly integrated drivetrain solution: Integration of motor, inverter and gearing

Electrical Drives: Performance Trends

Compact & Lightweight Drives Power Electronics & Integration Fault Tolerant Systems Minimum Energy/Cost in Manufacturing High Accuracy & Dynamics Extreme Ambient Conditions

Optimized Modulation Scheme for High Efficiency

Modulation Scheme as a Degree-of-Freedom

- Optimum Selection Depends on
 - Machine Type
 - Rotational Speed
 - Loss Distribution
 - Power Level

Increased Productivity in Manufacturing

■ Industry Consumes 43% of the Electricity Production Globally

- In Germany as much as 47%
- Machining is a Major Energy Consumer
- Metal Cutting has Largest Share in Automotive Industry

High Motivation for Sustainable Manufacturing

- Legislative Initiatives: 2009/125/EC and 2012/27/EU
- Cost Savings from Reduced Energy Consumption

Source: Calvanese et.al. Analysis of Energy Consumption in CNC Machining Centers and Determination of Optimal Cutting Conditions

ETH zürich

Source: ut-machining.com

Electrical Drives: Performance Trends

Compact & Lightweight Drives Power Electronics & Integration Fault Tolerant Systems Minimum Energy/Cost in Manufacturing High Accuracy & Dynamics Extreme Ambient Conditions

Motion Control with Extreme Accuracy & Dynamics

High Positioning Accuracy

- Wafer Processing/Inspection
- Air Bearings

ETH zürich

- Active Isolation System for Vibration Decoupling
- *S*_{X,Y}/*S*_Z 320/12 mm
- $a_{X,Y}/a_Z$ 1.2/0.2 g
- *a*_{\phi} 1 000 rpm/s
- Position Stability: ±25 nm, ±1 µrad
- Bidirectional Repeatability: ±0.4 µm, ±10 µrad

Source: Overboom et. al Design and Optimization of a Rotary Actuator for a Two Degree-of-Freedom $z{-}\varphi$ Module

Highly Dynamic Operation

- High Throughput Pick & Place: 10 000 pcs/hr
- Integrated Linear and Rotational Actuator
- S_{ϕ} 1 turn

- *a*_Z 15 g
- *a*_φ 73 500 rpm/s
- Linear Accuracy: 5 µm
- Rotational Accuracy: 3 mrad

ETH zürich

High-Precision Amplifiers for Mechatronic Applications

1 or 3-Phase nm-Precision Positioning System

- Linear/Rotational Permanent Magnet Machine
- Magnetic Bearing System to Avoid Friction
- Ultra-Low Noise/Distortion of Output Current
 → SNR & THD > 100 dB Required
- In-Depth Analysis of Noise/Distortion Sources in all System Components (Power Stage, Control, etc.)
- High-Quality Current Shaping with Fast-Switching WBG Power Semiconductors (GaN, SiC)

Electrical Drives: Performance Trends

Compact & Lightweight Drives Power Electronics & Integration Fault Tolerant Systems Minimum Energy/Cost in Manufacturing High Accuracy & Dynamics Extreme Ambient Conditions

ETH zürich

Extreme Temperature Drive System

- Extreme Ambient Temperatures Common in Automotive Applications (e.g. Hybrid EV)
 - Cooling of Power Electronics Critical
 - High Complexity of Liquid Cooling System
 - Dedicated High Temp. Fan Required for Forced-Air Cooling

*T*_A ≈ 120 °C

www.porsche.de

High-Temperature Pump for Acidic Environment

Pumping of Sulfuric Acid at up to 280°C

- Magnetic Levitation to Avoid Mech. Shaft
- No Particle Generation/Fluid Contamination

Key Design Challenges

- Mechanical Stability Despite Thermal Expansion
- Chemical & Thermal Resistance
- High-Temperature Eddy-Current Sensor
- Self-sensing for Rotor Angle Detection

Advanced Manufacturing Future Mobility Healthcare & Medical Renewable Energy Space Applications Developing World

Advanced Manufacturing

Future Mobility Healthcare & Medical Renewable Energy Space Applications Developing World

Adaptronics: Adaptive Mechanical Structures

Lightweight Mechanical Structures with Active Piezoelectric Vibration Damping

Flexible Piezoelectric Fibers Incorporated in Material Layers

Robots for Autonomous Construction

■ Contour Crafting: Large *«3D Printer»*

- 185 m² House in Under 24 Hours
- Low Cost / Low Waste

- Fast Brick Laying Robots
 - Faster Construction

http://spectrum.ieee.org/ automation/robotics/industrial-robots/ robots-do-construction-with-brick-and-concrete

Advanced Manufacturing Future Mobility

Healthcare & Medical Renewable Energy Space Applications Developing World

ETH zürich

Hybrid & Battery Electric Vehicles

- 25% of Global CO₂-Emissions Caused by Transportation Sector
 Replace Fossil Fuels by *Renewable* Electrical Power

 - Smaller CO₂-Footprint and Lower Total Cost of Ownership
- Main Technology Enablers/Drivers
 - Battery Energy/Power Density & Cost
 - Charging Technology & Infrastructure
 - (Cost) Optimization & Integration of **Powertrain and Power Electronics**

Porsche Cayenne Hybrid S, www.porsche.de

BRUSA 22kW Charger, www.brusa.biz

Honda Accord Hybrid, www.honda.com

Classical Locomotives

- Catenary Voltage
- Power Level
- 15kV or 25kV - Frequency $16^2/_{3}$ Hz or 50Hz 1...10MW typ.

Transformer:

ETH zürich

Efficiency Current Density Power Density

90...95% (due to Restr. Vol., 99% typ. for Distr. Transf.) 6 A/mm² (2A/mm² typ. Distribution Transformer) 2...4 kg/kVA

Next Generation Locomotives

Trends:

- Distributed Propulsion System → Volume Reduction (Decreases Efficiency)
- Energy Efficient Rail Vehicles → Loss Reduction (Requires Higher Volume)
- Red. of Mech. Stress on Track → Mass Reduction

Source: ABB

Fig. 1. Conventional AC-DC conversion with a line frequency transformer (LFT).

Fig. 2. AC-DC conversion with medium frequency transformer (MFT).

- Replace LF Transformer by Medium Frequency Power Electronics Transformer \rightarrow **33**
- Medium Frequency Provides Degree of Freedom → Allows Loss Reduction AND Volume Reduction

► 1ph. AC/DC Power Electronic Transformer - PET

Energy Harvesting in Railway Applications (1)

Wheel Lock During Braking

- Cost of Repair
- Downtimes
- Replacement Costs

Anti-lock Braking System (ABS)

• Electrical Power Not Available for Controller on Freight Wagons

Local Electrical Energy Harvesting

- Non-Contact
- Modular
- Robust
- 5 ... 10 W @ 10 mm Air Gap
- Self-starting

Energy Harvesting in Railway Applications (2)

Novel Axial-Flux Non-Contact Energy Harvester

- High Magnet Utilization
- Generator can be Integrated

Energy Management

- Energy Storage
- Line Voltage Regulation
- Maximum Power Tracking

Energy Harvesting in Railway Applications (2)

Novel Axial-Flux Non-Contact Energy Harvester

- High Magnet Utilization
- Generator can be Integrated

Energy Management

- Energy Storage
- Line Voltage Regulation
- Maximum Power Tracking

1/2 Scale Test Bench

- Close to Real Application
- Dynamic Measurements
- Speed Sensing Development

Cargo Sous Terrain in Switzerland

- Project in Switzerland for Novel Logistics System Developed and Fully Financed by Industry
- Overground Transportation of People
- Underground Transportation of Goods

► Futuristic (!) Transportation: Hyperloop

Source: gizmag.com

- High Speed Train in Evacuated Tube
- Los Angeles → San Francisco in 30 Minutes
- **Low Friction: Low Energy Costs**
- Maglev or Hovercraft Technology

Towards the Full Electric Aircraft (2)

- **Today:** Full Electric 2-Seater Planes for Pilot Training
- Near Future: Electric Propulsion for Regional Transportation

SIEMENS

Future Hybrid or All-Electric Aircraft

- Powered by Thermal Efficiency Optimized Gas Turbine and/or Future Batteries (1000 Wh/kg)
- Highly Efficient Superconducting Motors Driving Distributed Fans (E-Thrust)
- Until 2050: Cut CO_2 Emissions by 75%, NO_x by 90%, Noise Level by 65%

Future Hybrid Aircraft

Advanced Manufacturing *Future Mobility* Healthcare & Medical Renewable Energy Space Applications **Developing World**

Implantable Left-Ventricular Assist Device

Highly Compact Electrical Drive for Implantable Blood Pump

- Elimination of Ball Bearings for High Purity
- Hydrodynamic Thrust Bearing (Blood as Fluid)
- Passive Magnetic Bearings

Source: heartware.com

Transcutaneous Power Supply

■ Implanted Devices with Ever-Higher Energy Demand (e.g. Heart-Assist Devices)

High Risk of Severe Infections due to Conductive Connection

Fully-Implantable LVAD

- Wireless Power Transfer
- Wireless Communication
- Implated Battery Backup
- Implanted Motor Inverter & Electrical Blood Pump

Zurich Heart Project:

ETH zürich

ETH zürich

UniversityHospital Zurich

Pneumatic Artificial Muscules

Lightweight Pneumatic Actuators

- Expands Radially & Contracts Axially when Inflated
- Generates High Pulling Forces
- Low Working Pressures (0 7 bar)

10 cm Initial Length, Weighing only 100 g!

Mobile Applications \rightarrow Small and Light Weight High Speed Turbo Compressor

Power Electronic Systems Laboratory

Bionic Systems

- Innovative Way to Convey Future Orientation and Technolog Leadership
- Life Form Guarantees Emotional Relation

FESTO

Robotically Assisted Surgical Systems

- **Four Robotic Arms Holding a Camera and Surgical Instruments**
- **Complex Procedures with Minimum Invasion due to Small Incisions**
- Quicker Recovery Time and Shorter Hospital Stay

Robotic Exoskeleton for Humans

- Helping Patients with Partial Paralysis or for Rehabilitation After Injury
- Assist Workers with Heavy Lifting or Other Manual Tasks
- Protection of Firefighters/Soldiers in Harsh Environments

Advanced Manufacturing Future Mobility Healthcare & Medical Renewable Energy Space Applications Developing World

Airborne Wind Turbines

- Power Kite Equipped with Turbine / Generator / Power Electronics
- Power Transmitted to Ground Electrically
- Minimum of Mechanically Supporting Parts

ETH zürich

▶ 100 kW Airborne Wind Turbine

■ Ultra-Light Weight Multi-Cell All-SiC Solid-State Transformer – 8kV_{DC} → 700V_{DC}

- Medium Voltage Port 1750 ... 2000 VDC 100 kHz
- Switching Frequency
- Low Voltage Port 650 ... 750 VDC
- Cell Rated Power
- Power Density
- Specific Weight

- 6.25 kW 5.2 kW/dm³
 - 4.4 kW/kg

Renewable Energy

- **Grid Balancing**
- **Renewable Integration**
- Islands/Isolated Grids

Market Competition

- Cost (vs. Batteries)
- Power Density (vs. Supercaps)
- Niche Applications: Space etc.

480V Switchgear & Cluster Controller

> 480V Step-up Transformer

\rightarrow 200 Flywheels/20 MW, Stephentown NY

beaconpower.com

Cooling System

Flywheel Foundation (Flywheel inside)

Advanced Manufacturing Future Mobility Healthcare & Medical Renewable Energy Space Applications Developing World

ETH zürich

Space Application: Satelite Attitude Control

- Reaction Wheels are Widely Used for Satellite Attitude Control
- Currently Ball Bearings are Used Despite Disadvantages
- Magnetic Bearings Allow for
 - Less Microvibrations
 - Higher Speed: Smaller Reaction Wheel Size

Source: nasa.gov

108/116-
Selected Applications in Future Mechatronics

Advanced Manufacturing Future Mobility Healthcare & Medical Renewable Energy Space Applications Developing World

High-Altitude Drones

- Provide Internet Access to Large Underdeveloped Areas
- **Facebook Drone Research**
 - Solar Powered Drones
 - Stratospheric Flight
 - Can Stay Aloft for 90 days
 - High-Speed Laser Communication Between Drones

ETH zürich

Rural Electrification in the Developing World

2 Billion "Bottom-of-the-Pyramid People" Lack Access to Clean Energy

→ Urgent Need for Village-Scale Solar DC Mirogrids etc.
 → 2 US\$ for 2 LED Lights + Mobile-Phone Charging / Household / Month (!)

Conclusions

Summary

Future Perspectives for Motion Control

Possible Ways for *«Component»* Performance Improvement

- Miniaturization of Electric Machines
- Integration of Power Electronics
- System Optimization (Converter & Actuator)
- Application Specific Design
- etc.

Today's and Future High-Performance Systems Enable Countless Novel Application Areas

- Healthcare & Medical Systems
- Industry Automation & Robotics
- Renewable Energy & Smart Grid
- Mobility on Land/Air/Sea

• etc.

Power Electronic Systems Laboratory

Mechatronic Systems

- Target «System Level» and Cover Core Competences in Mechatronic Areas
 - Interdisciplinary Engineering Knowledge
 - Application-Specific Combination of High-Performance Components
 - Characteristics
 → Smart
 → Integrated
 → Hybrid
 → Ubiguitous
 - Future

 → Automatization (Machine Learning)
 → Modularization
 - \rightarrow Links to Internet
 - \rightarrow Society of Devices

Endless Product Innovation Possible by Combination of Core Elements

Bounded only by

- Laws of Physics
- Material Properties
- Imagination / Vision

«Multiplication by Infinity»

Backup Slides

Selected Converter Topology

- Interleaving of 2 Bridge Legs per Phase Volume / Filtering / Efficiency Optimum
- Active 1-O Output Power Pulsation Buffer

- ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range 4D TCM Interleaving Heatsinks Connected to DC bus / Shield to Prevent Capacitive Coupling to Grounded Enclosure

- 600V IFX Normally-Off GaN GIT ThinPAK8x8
 2 Parallel Transistors / Switch
- Antiparallel CREE SiC Schottky Diodes
- 1.2V typ. Gate Threshold Voltage 55 m Ω $R_{\rm DS,on}$ @ 25°C, 120m Ω @ 150°C 5 Ω Internal Gate Resistance

CeraLink Capacitors for DC Voltage Buffering

- Fixed Negative Turn-off Gate Voltage Independent of Sw. Frequency and Duty Cycle
- Extreme dv/dt Immunity (500 kV/µs) Due to CM Choke at Signal Isolator Input

Total Prop. Delay < 30ns incl. Signal Isolator, Gate Drive, and Switch Turn-On Delay

Thermal Management

- 30mm Blowers with Axial Air Intake / Radial Outlet Full Optimization of the Heatsink Parameters
- •
- **Outstanding Cooling Syst. Performance Index**
- 200um Fin Thickness
- 500um Fin Spacing 3mm Fin Height

- 10mm Fin Length
 CSPI = 37 W/(dm³.K)
 1.5mm Baseplate

Control Board & i=O Detection

- Fully Digital Control Overall Control Sampling Frequency of 25kHz
- TI DSC TMS320F28335 / 150MHz / 179-pin BGA / 12mmx12mm Lattice FPGA LFXP2-5E / 200MHz / 86-pin BGA / 8mmx8mm

- TCM Current / Induced Voltage / Comparator Output

i=0 Detection of TCM Currents Using R4/N30 Saturable Inductors
 Galv. Isolated / Operates up to 2.5MHz Switching Frequency / <10ns Delay

• Cascaded Control Structure

- Feedforward of Output Power Fluctuation Underlying Input Current / DC Link Voltage Control

Power Pulsation Buffer Capacitor

- High Energy Density 2^{nd} Gen. 400VDC CeraLink Capacitors Utilized as Energy Storage Highly Non-Linear Behavior \rightarrow Opt. DC Bias Voltage of 280VDC
- Losses of 6W @ 2kVA Output Power

■ Effective Large Signal Capacitance of C ≈140µF

- Embedded Switching Cell Package for Further Size Reduction
- Integr. Half Bridge Module incl. DC Link Caps and Drivers

- 2 Parallel Chips / SwitchEmbedded in PCB
- 8 mm Smaller than Conv. Design
 Extremely Low DC Link Indutance
 Driver Directly on Top of Switches
 Very Low Gate Inductance

Highly Versatile Signal Processing Platform

Highly Versatile Signal Processing Platform

- Modern Controller and FPGA ICs
 - Controller and FPGA Communicate via High Speed Memory Interface
 - Controller: TMS320F28335 (TI)
 - Fast implementation of User Programs, High-level Software Libraries available
 - Multitude of Peripheral Inits Readily available: PWM, ADC, etc.
 - FPGA: LFXP2-5E (Lattice Semiconductor)
 - True parallelizing of Processes
 - High Flexibility regarding Implementation Needs
 - High Speed Digital Control
 - High Number of Configurable I/O Pins
- Real-time debugging: Hardware Monitor
 - Converts Values of up to 4 Selected Control Variables into Analog Voltages → Displayed on Oscilloscope
 - Non-Invasive and Real-Time Debugging of Operating Power Converter

Fully Virtual Optimization and Prototyping

Advanced Finite-Element-Analysis of Designs

- 3-D Geometries, Moving Mesh (True Rotation)
- Time-Transient Numeric Solvers
- Skin Depth Resolution at High Frequency
- Non-Linear Magnetic Materials
- Coupled Multi-Physics Simulations

Multi-Core Parallel and Distributed Computing

Increasing the Machine Utilization Factor

Degrees-of-Freedom for Improved Utilization

- Manufacturing Methods
- Materials
- Cooling
- Machine Topology

- Integration of Magnetic Gears

(Pseudo Direct Drive)

+ Higher Torque per Magnetic Material

- + Low Current Density
- More Structural Mass
- More Complicated Design

High speed rotor with permanent magnets

▶ Pushing the Performance of Conventional Systems to the Limit (1)

Comprehensive Machine Models

- Magnetic Field, Torque, Losses
- Structural Mass
- Thermal Behavior

Advanced Machine Topologies

- Hallbach Array
- Cobalt-Iron Alloy or Air Core
- Copper or Aluminum Coils

Structural Mass Model

• Electromagnetic Models

ETH zürich

▶ Pushing the Performance of Conventional Systems to the Limit (2)

Pareto Fronts of all Considered Machine Topologies

 Pareto Space of Internal Rotor RFM with Segmented Halbach Magnetization

Weight-Optimized Machine Prototype

Internal rotor RFM

- 25 Pole Pairs / 60 slots
- CoFe Stator Iron
- Segmented Halbach Magnetization
- NdFeB Magnets
- Outer Dimensions: 200 mm x 65 mm

67 mm

- Bore radius:
- Active length: 25mm
- Weight: 2.1 kg \rightarrow 6.1 kW/kg

▲ CAD Drawing of AWT Motor Prototype

Motion Control: Global Market Size

Global AC Drives Market

(Pumps, Fans, Compressors, Conveyors, Extruders,...)

- USD 13.7 Billion in 2014
- USD 21 Billion in 2020

Main drivers

- Energy Savings in Manufacturing
- Government Regulations in Carbon Emissions
- Infrastructural Development especially in Asia-Pacific Region

Global Servo Motors and Drives Market

(Motors, Amplifiers, Sensors, Controller Modules)

- USD 8.6 Billion in 2014
- USD 12.5 Billion in 2020
- Main drivers
 - Rapid Growth in the Automation Market
 - Demand for Energy Efficient Processes
 - Increasing Production Capacity
- Fastest growth
 - 1. Asia-Pacific
 - 2. Europe

Biomimetic Systems in Healthcare

- **Biologically Inspired Actuators Replacing (Human) Body Parts**
- Neural Stimulation: Sensory Feedback to the Patient
 - Interaction with the Patient's Neurons
 - Detection of Patient's Intention

