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Examples of  
Research Activities in 

 Mechatronics 
 

            ■  Ultra High Speed Drives 
            ■      Bearingless Machines 

 



World Record ! 
 
 
 
 

100W @ 1„000„000 rpm 

•  μm-Scale PCB Drilling 
•  Dental Technology 
•  Laser Measurement Technology  
•  Turbo-Compressor Systems 
•  Air-to-Power 
•  Artificial Muscles 
•  Mega Gravity Science 
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Ultra High Speed Drive Systems 
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World Record ! 
 
 
 
 

500„000 rpm 

•   Laser Measurement Technology  
    Active Damping of Air Bearings 
•   Satellite Attitude Control 

Ultra High Speed Magnetically 
Levitated Drive Systems 

► 
► 
► 



Bearingless Motors 

●  Maximum Speed 2000rpm 
●  High Acceleration Capability  
    (3.8s from 0 → 2000rpm) 
●  7mm Air Gap  
●  Two Phase Winding Configurations 
●  Adaptive Unbalance Compensation Control 



Power  
Electronics 

Cross-Departmental 
 

Mechanical Eng., e.g. 
Turbomachinery, Robotics 

 
 
 

Microsystems 
Medical Systems  

 
 
 

 Economics / Society 

Actuators / 
EL. Machines 

PES Research Scope 

• Airborne Wind Turbines 
• Micro-Scale Energy Systems 
• Wearable Power 
• Exoskeletons / Artificial Muscles 
• Hybrid Systems 
• Pulsed Power 



Industry Collaboration 

• Renewable Energy 
• UPS 
• Smart Grid 
• Automotive Systems 
• More-Electric Aircraft 
• Medical Systems 
• Industry Automation 
• Semiconductor Process Technology 
• Etc. 

►  16  International Industry Partners 

►  Core Application Areas 
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Outline 

► Global Megatrends 
► Resulting Requirements for Power Electronics  
► Multi-Objective Optimization Approach 
► Optimization Application Examples 
► Power Electronics 2.0  
► Summary 
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Global 
Megatrends 

    

  Climate Change  
  Digitalization 
  Sustainable Mobility 
  Urbanization 
  Alleviate Poverty 
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  Climate Change  



Average Increase 
0.4%/a 

► Climate Change 

■   CO2 Concentration  &  Temperature Development 
■   Evidence from Ice Cores 
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►  Reduce CO2 Emissions Intensity (CO2/GDP) to Stabilize Atmospheric CO2 Concentration  

►  1/3 in 2050  → less than 1/10 in 2100 (AIST, Japan @ IEA Workshop 2007)  



Source: H. Nilsson 
Chairman IEA DSM Program 
FourFact AB 
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   Medium-Voltage Power  
Collection and Connection 

to On-Shore Grid 

  Utilize Renewable Energy (1)    

─  Higher Reliability (!) 
─  Lower Costs 

►      Off-Shore Wind Farms 
►     Medium Voltage Systems 
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■   Enabled by Power Electronics  

Source: M. Prahm / Flickr 



Source:                         2006 

  Utilize Renewable Energy (2)    

─  Extreme Cost Pressure (!)  
─  Higher Efficiency 
─  Higher Power Density 

►  Photovoltaics Power Plants 
►  Up to Several MW Power Level 
►  Future Hybrid PV/Therm. Collectors   
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■   Enabled by Power Electronics  



─   Electrolysis for Conversion of Excess Wind/Solar Electric Energy    into           Hydrogen   
                                                                                                                         Fuel-Cell Powered Cars 
                                                                                                                         Heating 

Hydrogenics 100 kW  
H2-Generator (η=57%), 
High Power @ Low 
Voltage 

Source: www.r-e-a.net 
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■  Enabled by Power Electronics  

  Utilize Renewable Energy (3)    



Global 
Megatrends 

    

  Climate Change 
   
  Sustainable Mobility 
  Urbanization 
  Alleviate Poverty 
  Etc.  

    

  Digitalization  



► Digitalization 

■   Internet of Things (IoT)  / Cognitive Computing   

►  Moore's Law        ►  Metcalfe's Law   

─  Ubiquitous Computing / BIG DATA 
─  Fully Automated Manufacturing / Industry 4.0 
─  Autonomous Cars  
─  Etc. 

   

–  Moving form Hub-Based 
          to Community Concept Increases 

          Potential Network Value  
         Exponentially (~n(n-1)  or  

    ~n log(n) ) 
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Source: Intel Corp. 



 

Server-Farms 
up to 450 MW 

99.9999%/<30s/a 
$1.0 Mio./Shutdown 

 
Since 2006  

Running Costs >  
Initial Costs 

─  Ranging from Medium Voltage to Power-Supplies-on-Chip 
─  Short Power Supply Innovation Cycles 
─  Modularity / Scalability 
 
─  Higher Power Density (!) 
─  Higher Efficiency (!) 
─  Lower Costs  
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■  Enabled by Power Electronics  

Source: REUTERS/Sigtryggur Ari 

  Green / Zero                Datacenters (1) 



► Power Density Increased by 
             Factor 2 over 10 Years 
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─  Ranging from Medium Voltage to Power-Supplies-on-Chip 
─  Short Power Supply Innovation Cycles 
─  Modularity / Scalability 
 
─  Higher Power Density (!) 
─  Higher Efficiency (!) 
─  Lower Costs  

 

■  Enabled by Power Electronics  

  Green / Zero                Datacenters (2)  



  Fully Automated Manufacturing – Industry 4.0 

Source: 

─  Lower Costs (!) 
─  Higher Power Density  
─  Self-Sensing etc. 
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■  Enabled by Power Electronics  



►  ABB´s Future Subsea  
      Power Grid  “Develop 
      All Elements for a  
      Subsea Factory” 
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■   Enabled by Power Electronics  

  Fully Automated Raw Material Extraction 

─    High Reliability (!) 
─    High Power Density (!) Source: matrixengineered.com 



Global 
Megatrends 

    

  Climate Change 
  Digitalization 
   
  Urbanization 
  Alleviate Poverty 
  Etc.  

    

  Sustainable Mobility  



► Sustainable Mobility 

www.theicct.org   

■   EU Mandatory 2020 CO2 Emission Targets for New Cars   

─  147g CO2/km for Light-Commercial Vehicles  
─  95g CO2/km for Passenger Cars 
─  100% Compliance in 2021 

►  Hybrid Vehicles 
►     Electric Vehicles 
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FF-ZERO1 
750kW / 322km/h 
1 Motor per Wheel  
300+ Miles Range 

Lithium-Ion Batteries along the Floor  

  Electric Vehicles (1) 

─  Higher Power Density 
─  Extreme Cost Pressure (!) 

 

■  Enabled by Power Electronics  -  Drivetrain / Aux. / Charger  
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  Electric Vehicles (2) 

─  Higher Power Density 
─  Extreme Cost Pressure (!) 

► Typ. 10% / a Cost Reduction 
► Economy of Scale ! 

Source:    PCIM 2013 
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■  Enabled by Power Electronics  -  Drivetrain / Aux. / Charger  



─  Hyperloop  
─  San Francisco  Los Angeles in 35min 

► Low Pressure Tube 
► Magnetic Levitation 
► Linear Ind. Motor 
► Air Compressor in Nose 

www.spacex.com/hyperloop 
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  Futuristic Mobility Concepts (1)  
 

■  Enabled by Power Electronics     



► Eff. Optim. Gas Turbine   
► 1000Wh/kg Batteries   
► Distrib. Fans (E-Thrust) 
 

► Supercond. Motors  
► Med. Volt. Power Distrib. 

Source: 

  Futuristic Mobility Concepts (2)  
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■  Enabled by Power Electronics     

─   Cut Emissions Until 2050   
     

   * CO2 by 75%,  
   * NOx by 90%,  
   * Noise Level by 65%   

 

Future Hybrid  
Distributed Propulsion Aircraft 



Source:    
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► Electric Power Distribution  
► High Flex. in Generator/Fan Placement 
► Generators: 2 x 40.2MW / Fans: 14 x 5.74 MW  (1.3m Diameter) 

 NASA N3-X  
Vehicle Concept using  

Turboel. Distrib. Propulsion 

  Futuristic Mobility Concepts (3)  
 

■  Enabled by Power Electronics     



Global 
Megatrends 

    

  Climate Change 
  Digitalization 
  Sustainable Mobility 
   
  Alleviate Poverty 
  Etc.  

    

  Urbanization  



► Urbanization 
■  60% of World Population  Exp. to Live in  Urban Cities  by 2025 
■  30 MEGA Cities Globally  by 2023 

─  Smart Buildings  
─  Smart Mobility 
─  Smart Energy / Grid  
─  Smart ICT, etc. 

► Selected Current & Future MEGA Cities  2015  2030 

 

Source: World Urbanization 
 Prospects: The 2014 Revision 
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Source:   

  Smart Cities / Grid (1) 
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■  Enabled by Power Electronics 

 www.masdar.ae  

─    Masdar = “Source” 
─  Fully Sustainable Energy Generation 
     * Zero CO2 
     * Zero Waste 
─  EV Transport / IPT Charging 
─  to be finished  2025  



Source:   
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 www.masdar.ae  

  Smart Cities / Grid (2) 
 

■  Enabled by Power Electronics 

─    Masdar = “Source” 
─  Fully Sustainable Energy Generation 
     * Zero CO2 
     * Zero Waste 
─  EV Transport / IPT Charging 
─  to be finished  2025  



Global 
Megatrends 

    

  Climate Change 
  Digitalization 
  Sustainable Mobility 
  Urbanization 
   
  Etc.  

    

  Alleviate Poverty 



► Urgent Need for Village-Scale Solar DC Microgrids etc.  
► 2 US$ for 2 LED Lights + Mobile-Phone Charging / Household  / Month (!) 
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► Alleviate Poverty 
■   2 Billion “Bottom-of-the-Pyramid People” are Lacking Access to Clean Energy  
■   Rural Electrification in the Developing World  



… in  Summary    Source: whiskeybehavior.info 
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► Future Extensions of Power Electronics Application Areas 

■  Power Electronics Covers an Extremely Wide Power / Voltage / Frequency Range 
■  Extensions for SMART xxx / Mobility Trends / Availability Requirements 

─  Medium-Voltage / Medium. Frequ. Conv. 
─  3D-Integr. of Low Power Converters 
─  Life-Cycle & Reliability Analysis 

► Current / New Application Areas (1) 
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► Cost Pressure as Common Denominator of All Applications (!) 
► Key Importance of Technology Partnerships of Academia & Industry   

■  Commoditization / Standardization for High Volume Applications  
■  Extension to Microelectronics-Technology (Power Supply on Chip) 
■  Extensions to  MV/MF    

► Current / New Application Areas (2) 
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► Future “Big-Bang” Disruptions 
■  “Catastrophic” Success of Disruptive New (Digital) Technologies 
■    No Bell-Curve Technology Adoption / Technology S-Curve  
■  “Shark Fin“-Model 

►  Consequence:  Market Immediately   &   Be Ready to Scale Up ─  and Exit ─  Swiftly (!)  

Source: www.verschuerent.wordpress.com 
February 2015 

See also:  
Big Bang Disruption – 
Strategy in the Age of 

Devastating Innovation,  
L. Downes and P. Nunes 



    

Mutual Coupling of Performances 
New Integration Technologies 

  Power Converter  
Design Challenges  
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Design Challenges  



►  Required Power Electronics  
        Performance Improvements 

─  Power Density       [kW/dm3] 
─  Power per Unit Weight    [kW/kg] 
─  Relative Costs    [kW/$] 
─  Relative Losses  [%] 
─  Failure Rate            [h-1] 

 

■  Performance  Indices 

[kgFe    /kW]  
[kgCu    /kW] 
[kgAl         /kW] 
[cm2

Si     /kW] 

►
 

► 

Environmental Impact… 
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►  Multi-Objective Design Challenge (1)  
 

■   Counteracting Effects of Key Design Parameters 
■   Mutual Coupling of Performance Indices  Trade-Offs 

  Large Number of Degrees of Freedom / Multi-Dimensional Design Space  
  Full  Utilization of Design Space only Guaranteed by  Multi-Objective Optimization   

26/64 
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►  Multi-Objective Design Challenge (1)  

  Large Number of Degrees of Freedom / Multi-Dimensional Design Space  
  Full  Utilization of Design Space only Guaranteed by  Multi-Objective Optimization   

 

■   Counteracting Effects of Key Design Parameters 
■   Mutual Coupling of Performance Indices  Trade-Offs 



■        Specific Performance  
      Profiles / Trade-Offs 
      Dependent on Application 
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►  Multi-Objective Design Challenge (2)  



► Remark: Visualization of Multiple Performances ;-) 

► H. Chernoff (Stanford):  “The Use of Faces to Represent Points in K-Dimensional Space Graphically” 

■    Spider Charts, etc. 
■    Chernoff-Faces  
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Mutual Coupling of Performances 
New Integration Technologies 

  Power Converter  
Design Challenges  
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► Advanced Technologies / Extreme Integration 

■    Industry Is Leading the Field (!) 
 
─   Cutting Edge Converters (up to 1.5kW) 3D-Integrated (!) 
─   PCB Based Demonstrators Do NOT (any more) Provide Much Information (!)  

■   Future Role of Universities in Question (!) 
 
─   Not Any More Many “Low Hanging” Fruits 
─   Solution of Non-Problems  vs.  Non-Solution of Problems  
─   Industry Technology Partnership for Technology Access 
─  “Fab-Less” Research @ Universities? 

► Research on Multi-Objective Design / Virtual Prototyping as Natural Consequence (!)  

 

Citation:    L.H. Fink 



Multi-Objective 
Optimization 

    

  Abstraction of Converter Design 
  Design Space / Performance Space 
  Pareto Front 
  Sensitivities / Trade-Offs 
 



  Mapping  of “Design Space” into System “Performance Space” 

Performance Space 

Design Space 

► Abstraction of Power Converter Design 
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► Mathematical Modeling 
     of the Converter Design 

   Multi-Objective Optimization  –  Guarantees Best    Utilization of All Degrees of Freedom (!) 
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►  Multi-Objective Optimization (1) 
 

■   Ensures Optimal Mapping of the “Design Space” into the “Performance Space” 
■   Identifies Absolute Performance Limits  Pareto Front / Surface 

  Clarifies Sensitivity                  to Improvements of Technologies  
  Trade-off Analysis   
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► Determination of the η-ρ-     Pareto Front (a) 

─  Core Geometry / Material 
─  Single / Multiple Airgaps 
─  Solid / Litz Wire, Foils 
─  Winding Topology 
─  Natural / Forced Conv. Cooling 
─  Hard-/Soft-Switching 
─  Si / SiC 
─  etc. 
─  etc. 
─  etc. 

─  Circuit Topology 
─  Modulation Scheme 
─  Switching Frequ. 
─  etc. 
─  etc. 

■   System-Level Degrees of Freedom    

 

■   Comp.-Level Degrees of Freedom of the Design   

■   Only η   -ρ    -Pareto Front Allows Comprehensive 
        Comparison of Converter Concepts (!) 
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■      Example:  Consider Only  fP  as  Design Parameter        

fP =100kHz 

“Pareto Front”  

► Determination of the η-ρ-     Pareto Front (b) 

■      Only the Consideration of  
      All Possible Designs / Degrees 
      of Freedom Clarifies the  
      Absolute η-ρ-Performance  
      Limit  
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►  Multi-Objective Optimization (2) 
 

■   Design Space Diversity  
■   Equal Performance for Largely Different Sets of Design Parameters 

   E.g. Mutual Compensation  of  Volume and Loss Contributions (e.g. Cond. & Sw. Losses)  
   Allows  Optimization for Further Performance Index (e.g. Costs) 
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► Converter Performance Evaluation  
     Based on η-ρ-σ-Pareto Surface 

■    Definition of a Power Electronics “Technology Node”  (η*,ρ*,σ*,fP*) 
■    Maximum σ [kW/$], Related Efficiency & Power Density  

►
 

   Specifying  Only a Single Performance Index is of No Value (!) 
   Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)   
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►
 



► Remark:  Comparison to “Moores Law” 

  Definition of  “η*,ρ*,σ*,fP*–Node”  Must Consider Conv. Type / Operating Range etc. (!)  

39/64 

■   “Moores Law” Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!) 
■     Complexity for Min. Comp. Costs Increases approx. by Factor of 2 / Year   

Gordon Moore: The 
Future of Integrated 
Electronics, 1965  
(Consideration of Three 
Consecutive Technology 
Nodes) 

Lower 
Yield 

Economy of 
Scale 

>2015: Smaller 
Transistors but Not  
any more Cheaper 
►
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 Example #1 
 

Two-Level vs. Three-Level  
Dual Active Bridge   

Source: SMA 



► Wide Input Voltage Range   
     Isolated DC/DC Converter  

─  Bidirectional Power Flow 
─  Galvanic Isolation 
─  Wide Voltage Range 
─  High Partial Load Efficiency 

■  Universal Isolated DC/DC Converter 

►
 

Structure of “Smart Home“ DC Microgrid 

►
 

Universal DC/DC Converter 

─  Reduced System Complexity 
─  Lower Overall Development Costs 
─  Economy of Scale 

 

■  Advantages 
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! 



► Comparative Evaluation of Converter Topologies 

■   Conv. 3-Level Dual Active Bridge (3L-DAB) 

■   Advanced 5-Level Dual Active Bridge (5L-DAB) 
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► Optimization Results - Pareto Surfaces   

■  3-Level Dual Active Bridge 
■  5-Level Dual Active Bridge 
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   Example #2   
 

Performance & Life-Cycle-
Costs of Si vs. SiC  

Source: L. Lalonde / electronicdesign.com 



─  Typical Residential Application 
─  Single-Input/Single-MPP-Tracker Multi-String PV Inverter 
─  DC/DC Boost Converter for Wide MPP Voltage Range 
─  Output EMI Filter 

   Exploit Excellent Hard-  AND  Soft-Switching Capabilities of SiC 
   Find Useful Sw. Frequency and Current Ripple Ranges 
   Find Appropriate Core Material 

► Multi-Objective η-ρ-σ-     Comparison of Si vs. SiC 

■   Three-Phase PV Inverter System 
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■       Si IGBT  
     3L-PWM Inverter 

► Topologies  -  Converter Stages 

■      SiC MOSFET 
     Interleaved 
     2L-TCM Inverter 

■       SiC MOSFET 
     2L-PWM Inverter 
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► Optimization Results  -  Pareto Surfaces   

─  No Pareto-Optimal Designs 
     for fsw,min> 60 kHz 
 
─  No METGLAS Amorphous  
     Iron Designs 

─  Pareto-Optimal Designs for  
     Entire Considered  fsw Range 
 
─  No METGLAS Amorphous  
     Iron Designs 

─  Pareto-Optimal Designs for  
     Entire Considered  fsw Range 
 
─  METGLAS Amorphous Iron     
     and  Ferrite Designs 
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SiC SiC Si  



► Optimization Results –  Investigations Along Pareto Surfaces  

               η        ρ      σ 
 

    

•   2L-TCM   
 

•   2L-PWM  
 

•   3L-PWM  

 

     Semiconductor Losses  
      Clearly Dominating  
          (35…70%) 

■       Comparison of the 
       Inverter Concepts 
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SiC SiC Si  

kfsw=12 



► Extension to Life-Cycle Cost (LCC) Analysis 

  Which is the Best Solution  Weighting , , σ,  e.g. in Form of Life-Cycle Costs (LCC)? 
  How Much Better is the Best Design? 
  Optimal Switching Frequency? 

■  Performance Space Analysis 

─  3 Performance Measures: , , σ 
─  Reveals Absolute Performance Limits / 
         Trade-Offs Between Performances    

■  Life-Cycle Cost Analysis 

─  Post-Processing of Pareto-Optimal Designs 
─  Determination of Min.-LCC Design 
─  Arbitrary Cost Function Possible   
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► Post-Processing 

─  22% Lower LCC  than 3L-PWM 
─  5%  Lower LCC  than 2L-TCM 
─  Simplest Design 
─  Probably Highest Reliability 
─  Lower Vol. (Housing) Not Yet Considered! 

■    Best System - 2L-PWM SiC Converter 
      @ 44kHz & 50% Current Ripple 

 

■   Life-Cycle Cost Analysis (10 years)   

   Application of SiC Justified on “System Level” 

►
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SiC SiC Si  



Inductive Power Transfer  Example #3   

Source: www.qualcomm.com 



► Multi-Objective Optimization of 5kW Prototype 

■   Design Process Taking All Performance Aspects into Account 

■   System Specification 
 
 
 
 

    - Input Voltage          400V 
    - Battery Voltage       350V 
    - Output Power               5kW 
    - Air Gap                       50mm 

■   Constraints / Side Conditions 
 
 
 
 

    - Thermal Limitations       [°C] 
    - Stray Field Limits                 [μT] 
    - Max. Constr. Vol.               [m3] 
    - Switching Frequency    [kHz] 

■   System Performance  
 
 
 
 

         * Efficiency             η = Pout/Pin          [%] 
         * Power Density      α = Pout/Acoil             [kW/dm2]  
         * Stray Field                 β = Bmax/Bnorm      [%]  
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►  η-     α-    β-    Pareto Coil Optimization 
■   Encountered Design Trade-Offs 

  Pareto-Optimization Allows to Study Influence of Key Design Parameters 

50/64 

* Coil Size        vs.   Efficiency             
* Coil Size        vs.   Stray Field         
* Frequency  vs.   Stray Field 



   Example #4   
 

Electrical System of an  
Airborne Wind Turbine   M. Loyd, 1980 



► Airborne Wind Turbine (AWT) -  

■   Power Kite   On-Board Turbine / Generator / Power Electronics 
■   Power Transmitted to Ground Electrically 
■   Minimum of Mechanical Support 
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■   Rated Power                                 100kW 
■      Operating Height                   800…1000m 
■   Ambient Temp.                                40°C  
■   Power Flow                  Motor & Generator 

   El. System Target Weight             100kg 
   Efficiency (incl. Tether)                     90% 
   Turbine /Motor              2000/3000rpm 

52/64 

► AWT Electrical System Structure 



► Overall AWT System Performance  

■  Final Step:  System Control Consideration 

►
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Multi-Objective  

Optimization 
Application Examples     

  Comparative Converter Evaluation   
  Impact of Technology Progress  & 
  Design Space Diversity 



■   Design / Build the 2kW 1-Φ Solar Inverter with the Highest Power Density in the World 
■   Power Density > 3kW/dm3 (50W/in3) 
■   Efficiency    > 95% 
■   Case Temp.  < 60°C 
■   EMI  FCC Part 15 B 

  Push the Forefront of New Technologies in R&D of High Power Density Inverters 

! 

! 

! 

! 
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Selected Converter Topology    

   ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)  
   Heatsinks Connected to DC Bus / Shield  to Prevent Cap. Coupling to Grounded Enclosure   

■   Interleaving of 2 Bridge Legs per Phase    
■   Active DC-Side Buck-Type Power Pulsation Buffer 
■   2-Stage EMI AC Output Filter   
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Little-Box 1.0 Prototype      

–  8.2 kW/dm3   
–  96,3%  Efficiency @ 2kW 
–  Tc=58°C @ 2kW 

■   Performance        

   Analysis of Potential Performance Improvement for “Ideal Switches”  

–  600V IFX Normally-Off GaN GIT  
–  Antiparallel SiC Schottky Diodes  
–  Multi-Airgap Ind. w. Multi-Layer Foil Wdg 
–  Triangular Curr. Mode ZVS Operation 
–  CeraLink Power Pulsation Buffer 

■   Design Details        
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  Analysis of  Improvement of  Efficiency @ Given Power Density  &  Maximum Power Density  
  The Ideal Switch is NOT Enough (!) 

 Little Box 1.0 @ Ideal Switches (TCM) 

■   Multi-Objective Optimization of Little-Box 1.0  (X6S Power Pulsation Buffer)  
■   Step-by-Step Idealization of the Power Transistors 
■   Ideal Switches:  kC= 0 (Zero Cond. Losses);  kS= 0 (Zero Sw. Losses) 

Zero Output  
Cap. and Zero Gate 
Drive Losses 
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■    L &  fS  are Independent Degrees of Freedom 
■    Large Design Space Diversity (Mutual Compensation of HF and LF Loss Contributions) 

 

ρ   = 6kW/dm3 

η   ≈ 99.35% 
 
L    =  50uH    
fS        =  500kHz  or  900kHz 
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 Little Box 1.0 @ Ideal Switches (PWM) 



Conclusions     

      Future Power Electronics Development  
        Future Virtual Prototyping 
 “Stairway to Heaven”   



► Future Development  

   More Application Specific Solutions 
   Mature Technology   –  Cost Optimization @ Given Performance Level 
   Design / Optimize / Verify (All in Simulation) -  Faster / Cheaper / Better 

■   Megatrends  –  Renewable Energy / Energy Saving / E-Mobility / “SMART XXX” 
■   Power Electronics  will Massively Spread in Applications  

60/64 



Multi-Domain 
Modeling / 

Simulation/ 
Optimization 

Hardware 
Prototyping 

20%  

80%  

2015  

2025 

80%  

20%  

► Future “Virtual Prototyping”   

   Main Research Challenges in Modeling (EMI, Reliability, Reduced Order Models etc.)   
   Main Practical Challenge is the Implementation in  Industry & Academia ;-)  

■   Offers Incredible Design Insight     –        Quantifies Trade-Offs / Technology Sensitivities (!) 
■   Extends Theory of Components      –   “Theory of Systems” 
■   Reduces Time-to-Market                –       Cuts Design Time from Weeks to Hours 
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Power MOSFETs & IGBTs 
Microelectronics 

Circuit Topologies 
Modulation Concepts 

Control Concepts 

Super-Junct. Techn. / WBG 
Digital Power 

Modeling &  Simulation 

2025 
2015 

► 
► 

► 
► 

SCRs / Diodes  
Solid-State Devices 

► Extrapolation of Technology S-Curve 

“Passives” 
 Adv. Packaging 

 η-ρ-σ-Design of Converters & “Systems” 
 Interdisciplinarity 

Paradigm 
Shift   

■ 
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■   “Stairway to Heaven”  

! 



Future  
Paradigm 

 
 
 
 

Shift    



■   Design Considering Converters as “Integrated Circuits” (PEBBs) 
■   Extend Analysis to Converter Clusters /  Power Supply Chains / etc.   

─   “Converter”         “Systems” (Microgrid) or “Hybrid Systems” (Automation / Aircraft) 
─   “Time”                     “Integral over Time” 
─   “Power”                  “Energy”  

 

─  Power Conversion            Energy Management / Distribution  
─  Converter Analysis         System Analysis (incl. Interactions  Conv. / Conv. or Load or Mains)   
─  Converter Stability              System Stability  (Autonom. Cntrl of Distributed Converters) 
─  Cap. Filtering                         Energy Storage  & Demand Side Management 
─  Costs  / Efficiency          Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency 
─  etc. 

► Power Electronics 2.0 
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►  New Power Electronics Systems  
      Performance Figures/Trends 

─  Power Density                                        [kW/m2] 
─  Environm. Impact     [kWs/kW] 
─  TCO                                 [$/kW] 
─  Mission Efficiency      [%] 
─  Failure Rate                                            [h-1] 

 
■  Complete Set of  
        New Performance  Indices 

►
 

►
 

Supply Chain  
& 

►
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■   End        



  Thank You !  


