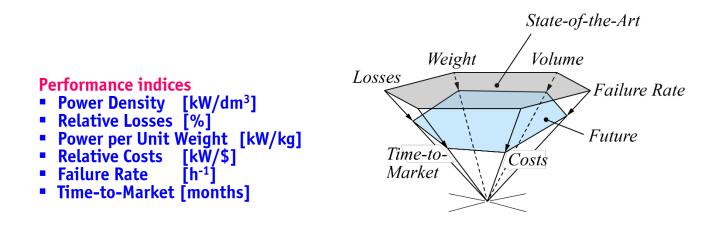


98.5% / 1.5kW/dm³ Multi-Cell Telecom Rectifier Module (230VAC/48VDC) – Breaking the Pareto Limit of Conventional Converter Approaches

M. Kasper and J. W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch **G. Deboy** Infineon Technologies Austria AG www.infineon.com

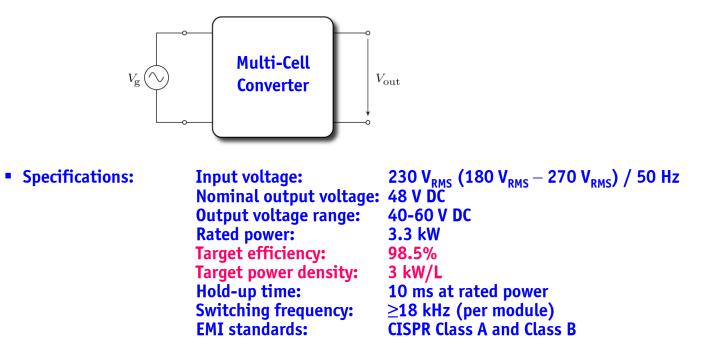


Motivation

Leverage advantages of the multi-cell approach

- higher effective switching frequency due to phase shift
- Iower filtering effort due to the cancellation of harmonics
- use of low-rated semiconductor devices
- improved thermal behavior due to a better surface-to-volume ratio

in order to shift the performance indices of power electronic converters to new levels.



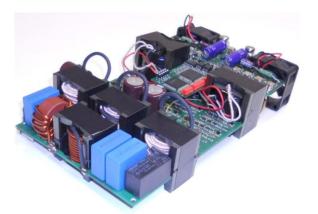
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

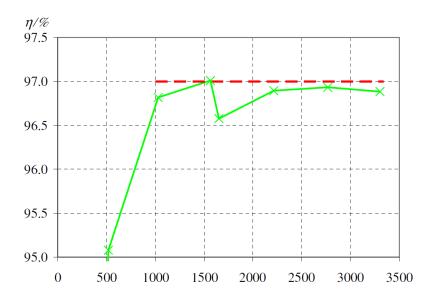
Target Application

Telecom Rectifier Module

24/7 Always ON operation > driver for high efficiency

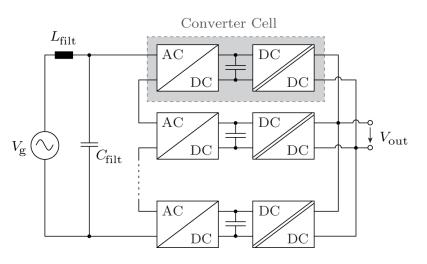
Output characteristics: Voltage source and current source





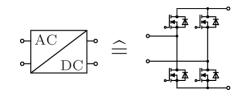
Benchmark: "Conventional" 3.3kW Telecom Rectifier Module

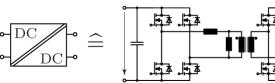
3x Interleaved TCM PFC Rectifier Stages
2x Interleaved Full-Bridge Phase-Shift DC/DC Conv. / Full-Bridge Synchr. Rectifier



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Multi-Cell Telecom Rectifier


Multiple converter cells connected in Input Series Output Parallel (ISOP) connection Natural step down ratio of 1/N_{cell}



- Each converter cell consisting of a
 - Full bridge rectification
 - Isolated DC-DC converter

Totem Pole

Phase Shift Full Bridge w/ sync. rect.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Degrees of Freedom in Multi-Cell Converters Optimizations

Converter realization possibilities

Calculation of <u>losses</u> and <u>volumes</u> for all (!) design combinations

Optimization Setup and Converter Modelling

Analytic modelling of losses and volumes necessary for optimization

MOSFETs

- Conduction losses
- Switching losses
- Heat sink volume

Inductive components

- Core losses
- Winding losses

Electrolyte DC-link capacitors

ESR and leak. curr. losses

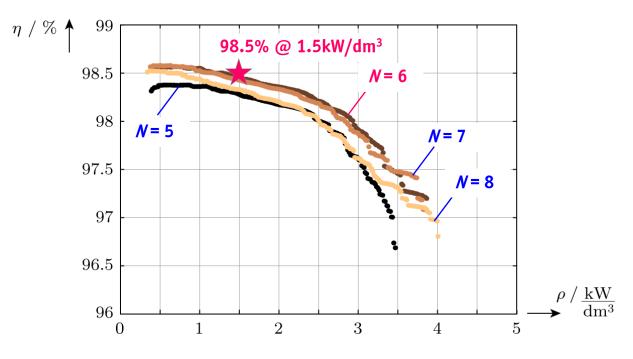
Input filter

Auxiliary losses

RMS current values

$$\begin{array}{c} U_{Sw}, I_{Sw}, T_{Sw} \\ \hline C_{OSS}(A_{Chip}), Q_{rr}(A_{Chip}), C_{GD}(A_{Chip}) \\ \hline P \\ \hline \end{array}$$

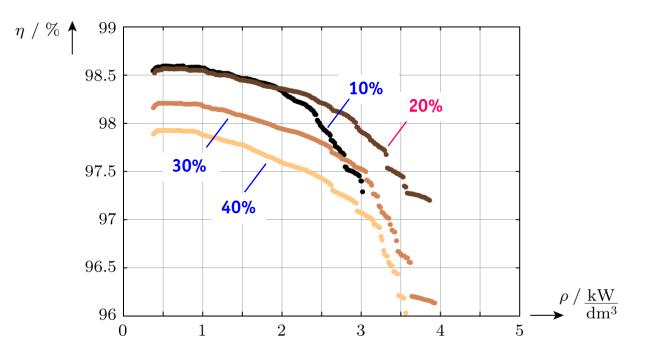
$$\blacktriangleright R_{\text{Th,JC}}(A_{\text{Chip}}), \text{CSPI}$$


Find optimal A_{Chip}

- ► iGSE (improved generalized Steinmetz equation)
- DC and AC losses (skin & proximity effect)
- ▶ RMS current @ 100Hz & *f*_{sw}
- Volume
- **Central controller and aux. electronics per module**

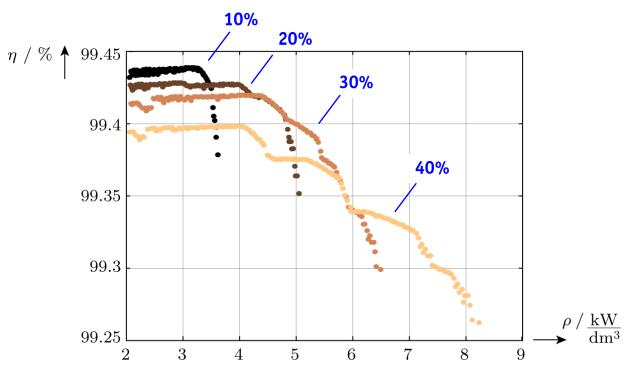
Full System Optimization Results

- Pareto optimal results for full load operation.
- Determination of the optimal number of converter cells.
- Voltage drop of the DC-link voltage during hold-up time 20%.


Choose N = 6 due to lower communication and hardware realization efforts.

Full System Optimization Results

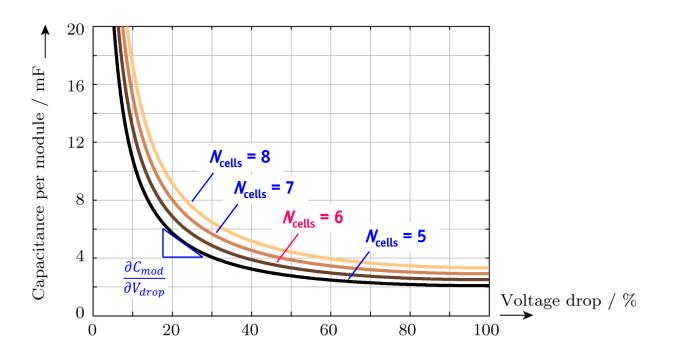
- Determination of Pareto optimal voltage drop of the DC-link voltage during 10 ms hold-up time
- Number of converter cells *N* = 6



Which trade-offs lead to 20% voltage drop of the DC-link during the hold-up time as best value?

Optimization Results: AC/DC Rectifier Stage

- Pareto-optimal results for the PFC stage for different permissible DC-link voltage drops
- Number of cells N = 6

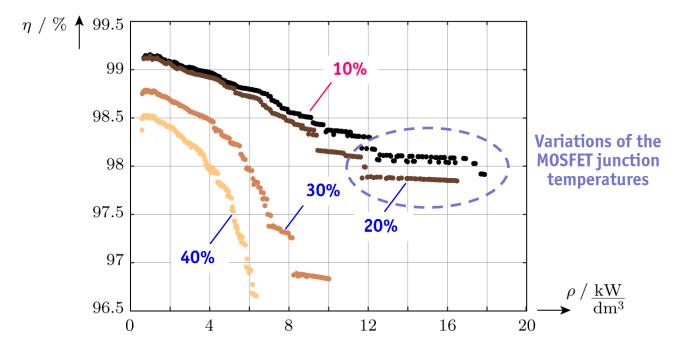

Main influence on efficiency/power-density by DC-link electrolyte capacitors.

Optimization Results: AC/DC Rectifier Stage

Required capacitance per module for different number of cells N_{cells} vs. the voltage drop during the hold-up time.

A voltage drop of 20% ... 30% is a reasonable choice with respect to the required capacitance.
Larger voltage drop → lower capacitance (and volume) → larger ESR (and losses)

Summary of Results for the AC/DC Rectifier Stage


A larger voltage drop leads to

- ► larger capacitor losses due to a larger ESR.
- a smaller capacitor volume since less capacitance is needed.
- no change in MOSFET losses.
- no change in inductor losses.

Optimization Results: DC/DC Converter Stage

- Pareto-optimal results of the Phase-Shift Full Bridge converter stage.
- Number of converter cells N = 6.

► The performance improves with lower permissible voltage drop values during the hold-up time.

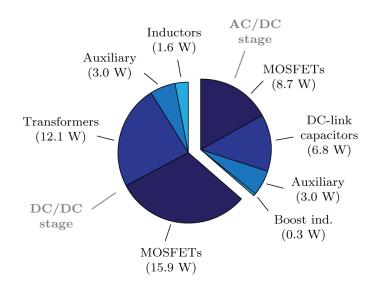
Summary of Results for the DC/DC Converter Stage

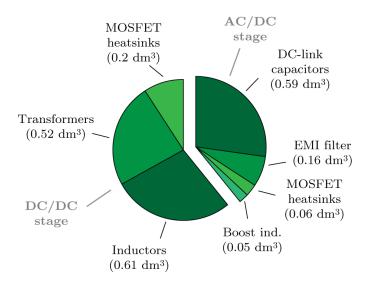
A larger voltage drop leads to

- ► a larger output inductance and thus either higher losses or a larger volume.
- ▶ higher transformer losses since a lower duty cycle and a larger turns ratio are required (→ less winding area per turn and higher RMS currents).
- ▶ larger RMS current values in the primary full-bridge MOŚFETs.
- larger reverse recovery losses due to a higher blocking voltage.

Final System

Parameters of the final system


- Efficiency: 98.5% @ P_{load} = 0.8 P_{rated}
- Power density: 1.5 kW/L
- \blacktriangleright $N_{\rm cells} = 6$
- Voltage drop during hold-up time: 20 %
- AC/DC rectifier stages
 - Sw. freq.: 18 kHz (per cell)
 - Boost inductor: 8 µH, 2x E 34/14/9, Metglas
 - DC-bus capacitors: 4x 2.2 mF
 - Total DC link voltage: 400V
 - MOSFETs: BSC046N10NS3 / Infineon @ T_i = 75°C
- Isolated DC/DC converters
 - Sw. freq.: 100 kHz
 - Transformer: 2x E 47/20/16, N87
 - Inductor: 41 μH, E 47/20/16, N87
 - MOSFETs: BSC046N10NS3 / Infineon @ T_i = 60°C



Final System

Loss distribution (at full load operation)

Volume distribution

		Losses	Volumes
AC/DC stage			0.86 dm ³
DC/DC stage		32.6 W	1.33 dm ³
	Total	51.4 W	2.19 dm ³

Conclusions and Outlook

- The benefits of the ISOP multi-cell converter approach allow to achieve efficiencies beyond the barriers of state-of-the-art systems.
- ► A comprehensive system optimization yields
 - an optimum number of converter cells
 - an optimum permissible voltage drop in the DC-link
 - an efficiency/power-density Pareto front for the entire system for all possible combinations of AC-DC rectifier and DC-DC converter stages.
 - A design with an efficiency of 98.5% at a power density of 1.5 kW/dm³

Future work

Experimental verification of optimization results

Thank you very much for your attention!

Please feel free to ask questions

