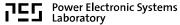


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

ECPE Double Workshop **II. Electrical Testing of Power Electronic Systems** 26–27 March 2014, Ismaning-Munich, Germany

On The Benefits of Floating Electrical Measurement


Y. Lobsiger^{*†}, G. Ortiz^{*†}, D. Bortis^{*†}, J. W. Kolar^{*}

* ETH Zurich, Switzerland Power Electronic Systems Laboratory lobsiger@lem.ee.ethz.ch

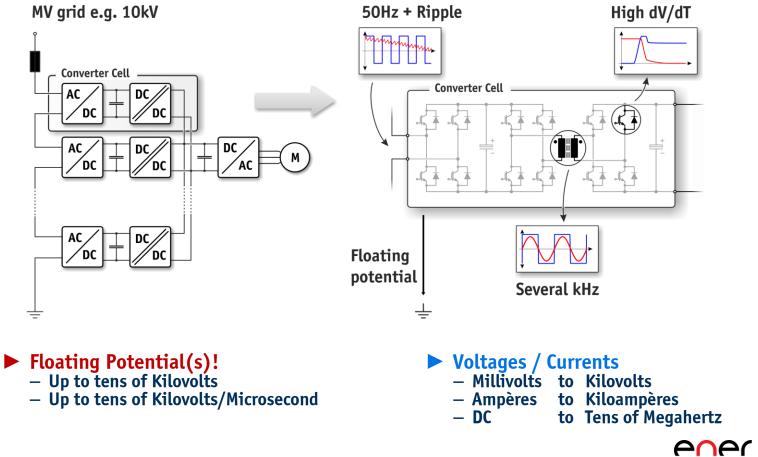
[†] Enertronics GmbH, Switzerland c/o ETH Zurich, Power Electronic Systems Lab. info@enertronics.ch

ECPE Double Workshop II. Electrical Testing of Power Electronic Systems 26–27 March 2014, Ismaning-Munich, Germany

Concept and Experimental Evaluation of a Novel DC – 100 MHz Wireless Oscilloscope

Y. Lobsiger^{*†}, G. Ortiz^{*†}, D. Bortis^{*†}, J. W. Kolar^{*}

* ETH Zurich, Switzerland Power Electronic Systems Laboratory lobsiger@lem.ee.ethz.ch [†] Enertronics GmbH, Switzerland c/o ETH Zurich, Power Electronic Systems Lab. info@enertronics.ch


Outline

- **•** Typical Testing of Power Electronics
- **State of the Art Isolated Measurement Principles**
- New Concept: Wireless Oscilloscope
- **Experimental Verification**
- **Summary**

Typical Situation at Testing of Power Electronic Systems

Measurements during bringing into service of converters

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

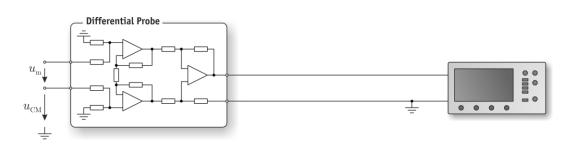
Outline

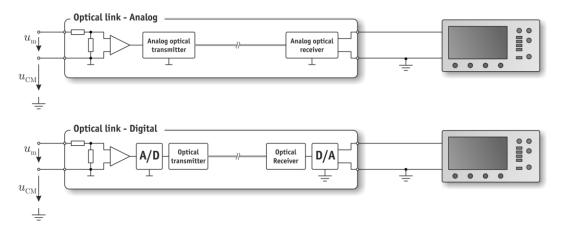
• Typical Testing of Power Electronics

State of the Art Isolated Measurement Principles

- New Concept: Wireless Oscilloscope
- **Experimental Verification and Comparison**
- **Summary**

State of the Art Isolated Voltage Measurement

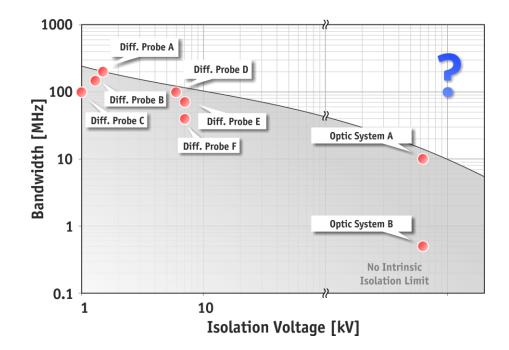

- **Basic Types**
- Differential Probes



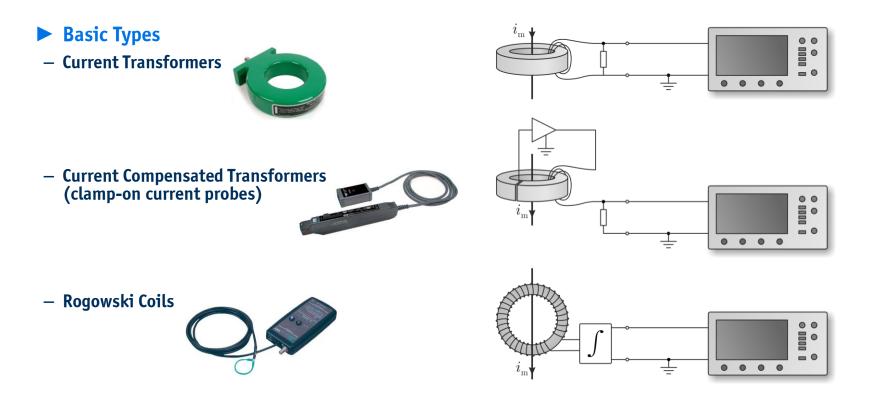
- Optically Isolated Systems (analog link / digital link)

Drawback: Probe Combines Isolation and Measurement

- Differential probe: strong attenuation of input voltage
 Optical systems: high bandwidth / data rate real time signal transmission

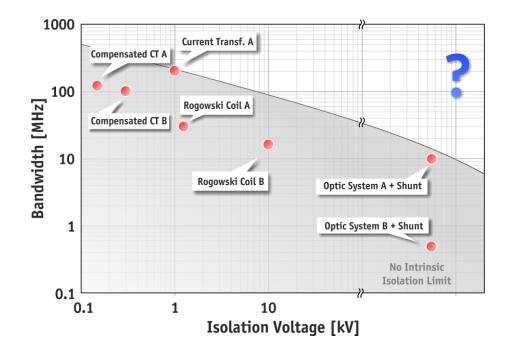


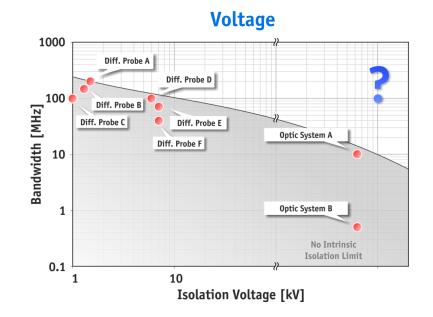
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


State of the Art Isolated Voltage Measurement

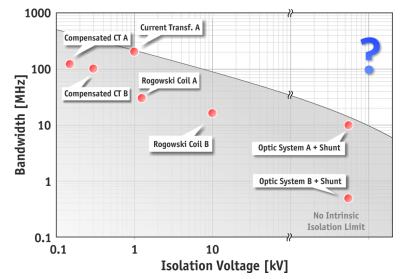
Trade-Off: Voltage Isolation vs. Measurement Bandwidth of Commercially Available Measurement Systems

State of the Art Isolated Current Measurement


- **Drawback: Combination of Isolation and Measurement**
- Parasitics scale with geometrical dimensions
- Large size high isolation low bandwidth


State of the Art Isolated Current Measurement

Trade-Off: Voltage Isolation vs. Measurement Bandwidth of Commercially Available Measurement Systems



State of the Art Isolated Voltage / Current Measurement

Current

► Goal: New Measurement Concept!?

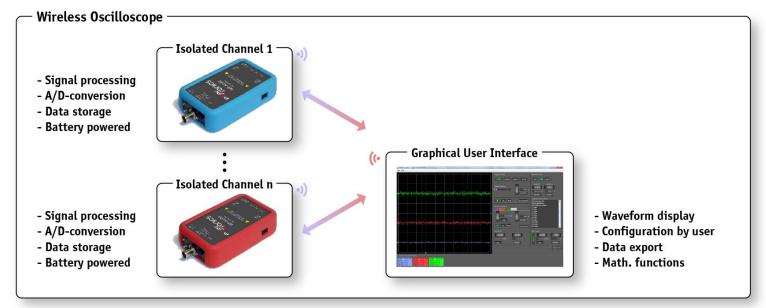
- Reaching no intrinsic isolation voltage
- Reaching at least 100 MHz bandwidth

Outline

- **•** Typical Testing of Power Electronics
- **State of the Art Isolated Measurement Principles**

New Concept: Wireless Oscilloscope

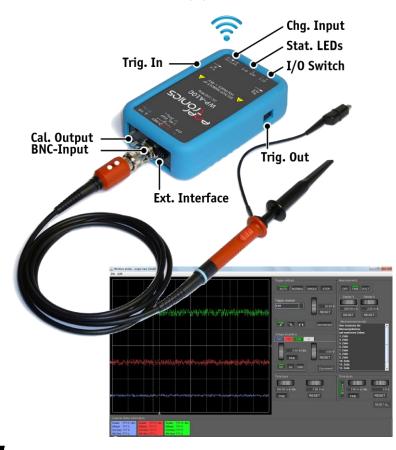
- **Experimental Verification and Comparison**
- **Summary**



Wireless Oscilloscope – Basic Idea

- Provide the Isolation at a Different Position in the Measurement Chain
 - Separate data acquisition (channels) and user interface!
 No need for isolated probes / sensors
 No need for an additional oscilloscope

System Overview



Wireless Oscilloscope – Overview

Isolated Channel(s) and GUI

Specifications of Prototype

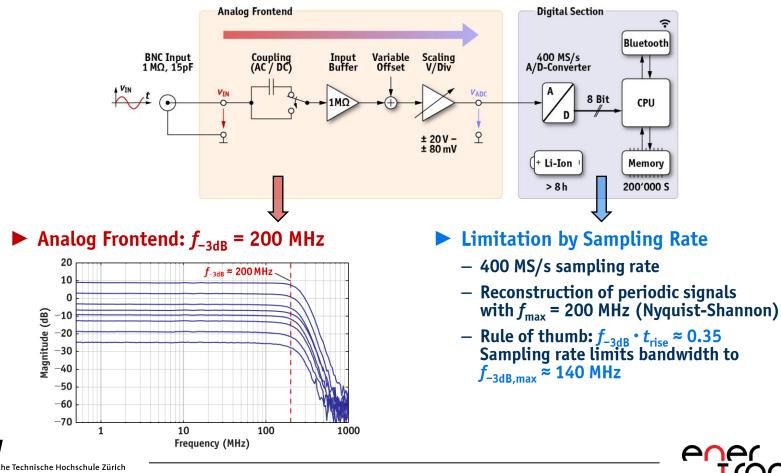
Analog Bandwidth	DC-100 MHz
Sampling Rate	400 MS/s
Memory Depth.	200'000 S
Resolution	8 Bit
Input Voltage	±80 mV ±20V ±800 mV ±200 V (1:10 passive probe)
Input Impedance	1 ΜΩ
Input Capacitance, Differential	15 pF
Input Capacitance, Common Mode	26 pF
Battery	Li-Ion, Rechargeable
Battery Runtime (typ.)	>8h
Communication	Bluetooth, Class 1
Trigger	Wireless & Optical
Physical Dimensions	141 mm x 81 mm x 32 mm
Weight	350 g

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

E

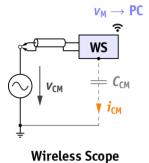
Outline

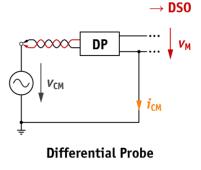
- **•** Typical Testing of Power Electronics
- **State of the Art Isolated Measurement Principles**
- New Concept: Wireless Oscilloscope


Experimental Verification and Comparison

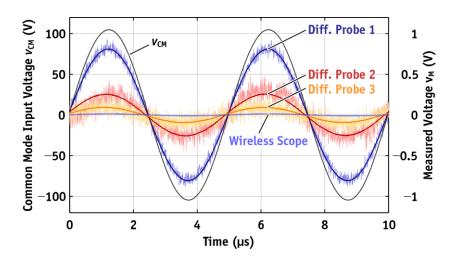
Summary

Analog Bandwidth


Isolated Channel – Schematic Overview



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


Common Mode Rejection @ f = 200 kHz

Measurement Setup

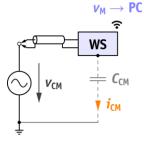
Measurement: Differential vs. Wireless

Differential Probes (State of the Art)

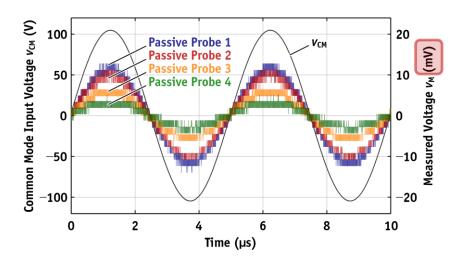
		CMRR
 Diff. Probe 1 (Diff. Probe 2 ((25 MHz)	≈ 42dB
– Diff. Probe 2	(100 MHz)	≈ 54dB
		~ (1] D

Wireless Oscilloscope

	CMRR
- Direct Connection	≈ 100 dB
- 1:1 Passive Probe	≈ 100 dB


− 1:10 Passive Probe ≈ 80 dB

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

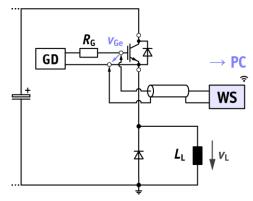

Common Mode Rejection @ *f* = 200 kHz

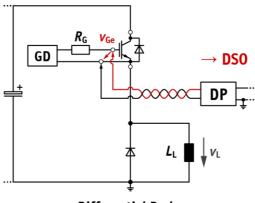
Measurement Setup

Wireless Scope

Wireless with Different Passive Probes

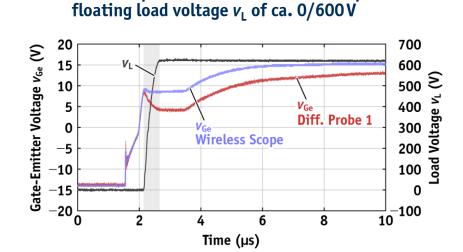
Wireless Oscilloscope: Influence of Passive Probe (1:10)


	CMRR
— Passive Probe 1	≈ 79 dB
– Passive Probe 2	≈ 80 dB
— Passive Probe 3	≈ 85 dB
— Passive Probe 4	≈ 90 dB



Isolated Voltage Measurement 1/2

Measurement Setup



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

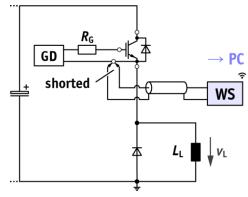
Differential Probe

High-Side Gate-Emitter Voltage

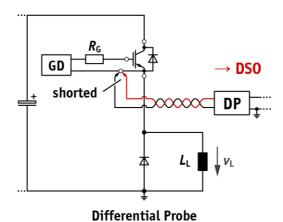
– Small amplitude of ca. ±15V with respect to the

Differential Probe 1

- Strong CM error of the measurement during the high dv/dt of the load voltage v_L

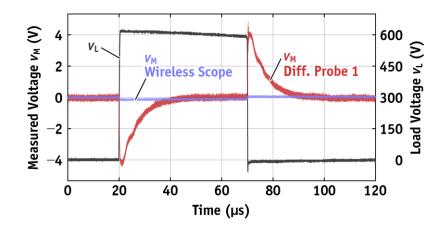

Wireless Scope

 No visible CM error of the measurement (Miller plateau is flat as expected)



Isolated Voltage Measurement 2/2

Measurement Setup



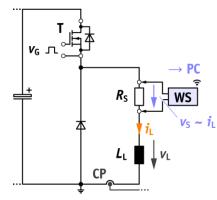
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Shorted Probe Leads on Floating Load Voltage

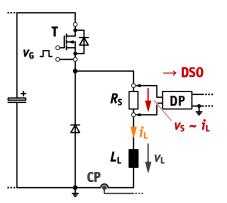
- Differential input signal = 0 V!
- Floating load voltage v_1 of ca. 0/600 V

Differential Probe 1

- Strong CM error during dv/dt transients of ca. 4 V! Error decays only with a time constant of ca. 7 µs!

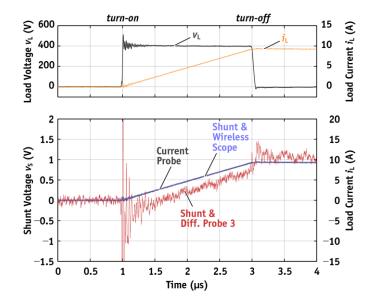

Wireless Scope

- Only very small CM errorLow noise level



Isolated Current Measurement 1

Measurement Setup

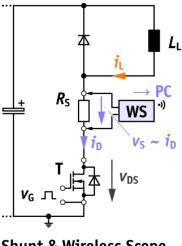

Shunt & Wireless Scope

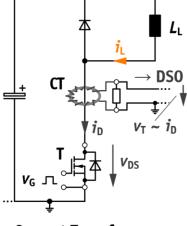
Shunt & Differential Probe

Load Current on Floating Voltage

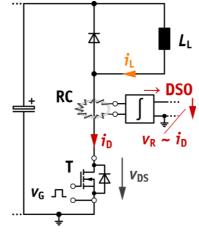
0.1 Ohm Coaxial Shunt + Diff. Probe 3 - Strong CM error - High noise level

0.1 Ohm Coaxial Shunt + Wireless Scope – Identical to clamp-on current probe, no errors


20

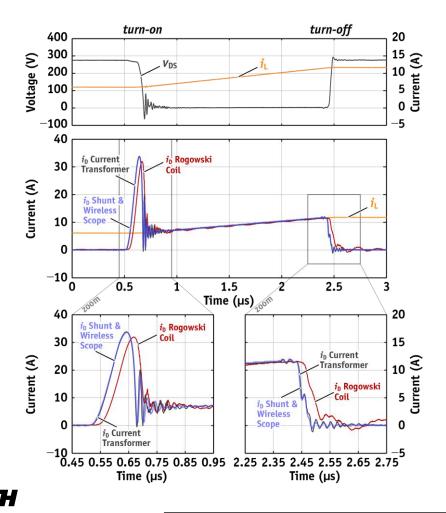

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Isolated Current Measurement 2 – Overview


- **MOSFET Drain Current**
- Floating Reference Voltage
- High Bandwidth Current Transients (turn-on / turn-off)

- Measurement Setup
- 0.10hm Shunt & Wireless Scope
 Current Transformer
- Rogowski Coil

Current Transformer

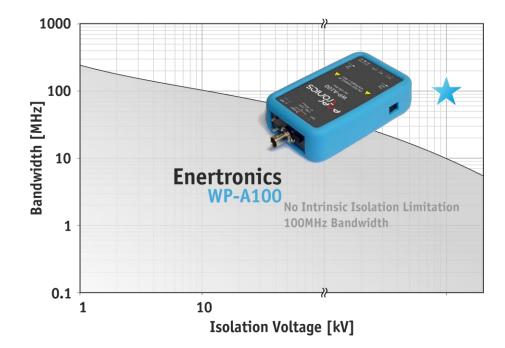

Rogowski Coil

Shunt & Wireless Scope

Isolated Current Measurement 2 – Results

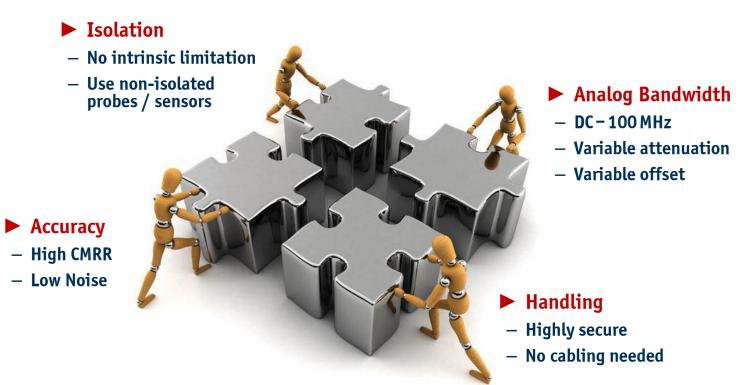
- Rogowski Coil
- Delay
- Limited bandwidth
- Ringing due to CM transients
- Limited isolation voltage
- Current Transformer
- High bandwidth
- No apparent CM error
- High-pass characteristic (no DC)
 Limited isolation voltage
- Shunt & Wireless Scope
- High bandwidth
- No apparent CM error
 DC 100 MHz
- No intrinsic limitation on isolation voltage

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

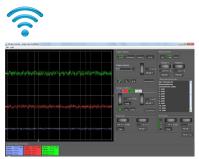

Outline

- **•** Typical Testing of Power Electronics
- **State of the Art Isolated Measurement Principles**
- **New Concept: Wireless Oscilloscope**
- **Experimental Verification and Comparison**
- **Summary**

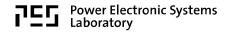
Wireless Oscilloscope – Isolated Measurement


- High Bandwidth (DC 100 MHz)
- **No Intrinsic Limitation on Isolation Voltage**

Summary


Wireless Oscilloscope

Summary


Wireless Oscilloscope

References

- [1] Y. Lobsiger, G. Ortiz, D. Bortis, and J. W. Kolar, "Concept and Experimental Evaluation of a Novel DC 100 MHz Wireless Oscilloscope," to be published in *Proc. of the 7th Int. Power Electronics Conf. (IPEC / ECCE-Asia)*, Hiroshima, Japan, May 2014.
- [2] Y. Lobsiger, D. Bortis and J. W. Kolar, "Case Study: Wireless Voltage Probe for Accurate Voltage Measurement on High and Transient Reference Voltages," in Proc. of the ECPE Workshop "Electronics around the Power Switch: Gate Drivers, Sensors and Control", Ismaning-Munich, Germany, June 29-30, 2011.
- [3] Y. Lobsiger, D. Bortis and J. W. Kolar, "100 MS/s 10-25 MHz Wireless Voltage Probe," in Proc. of the Power Conversion Intelligent Motion Conf. (PCIM Europe), Nuremberg, Germany, May 2011.

Questions ?

