

ECPE Tutorial, Zurich **Power Semiconductor Devices & Technologies** 06-07/06/2013 **Power Electronic Systems** Laboratory

Closed-Loop di/dt and dv/dt IGBT Gate Drive Concepts

Y. Lobsiger, J. W. Kolar

ETH Zurich, Switzerland Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

- Switching Trajectory Trade-Off / Challenges
- State-of-the-Art IGBT Switching Trajectory Control
- New Closed-Loop di/dt and dv/dt IGBT Gate Drive
- **Future Trends**

Clamped Inductive Load (Hard) Switching

Equivalent circuit for switching trajectories

Main goals: lowest delay times / switching losses / EMI & SOA operation at all operating points (load current levels, junction temperatures, ...)

Trade-Off / Main Goals

- **Low Switching Delay Times**
- Low Switching Losses
- **Low EMI**
- **SOA Operation**

Switching Delay Times / Switching Losses

- **Fast switching (small gate resistor)**
- High di/dt and dv/dt values
 Low switching delay times t_d
 Low switching losses E_{on/off}

- Slow switching (large gate resistor)
- Low di/dt and dv/dt values
 High switching delay times t_d
 High switching losses E_{on/off}

Turn-On – Diode Peak Reverse Recovery Current i_{rr}

Turn-on: freewheeling diode commutation

- di_c/dt affects diode peak reverse recovery current i_{rr}
 di_D/dt affects diode switching overvoltage
 SOA operation must be guaranteed

Turn-Off – Overvoltage v_{ov}

\blacktriangleright Turn-off: transistor switching overvoltage due to stray inductance L_{s}

- di_c/dt affects transient overvoltage v_{_{ov}} SOA operation must be guaranteed

Electromagnetic Compatibility (EMC)

- **Restriction of di/dt and dv/dt**
- Limits HF emissions / filtering effort
 Increases switching losses

- Conducted CM EMI dependent on dv_{CE}/dt
- **Radiated EMI dependent on di**_c/dt
- Direct impact on 2nd corner frequency

Switching Trajectory Trade-Off / Summary

- **Fast switching (small gate resistor)**
- Low switching delay times t_d
- Low switching losses E_{on/off}

Slow switching (large gate resistor)

Q

- Low peak reverse recovery current i_{rr}
- Low turn-off overvoltage v_{ov}
- Low EMI

- **• Optimal switching trajectories**
- Independent control of di/dt and dv/dt individually for turn-on and turn-off !

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Challenges of Switching Trajectory Shaping

- **Non-Linearities**
- **•** Temperature Dependencies
- Operating Point Dependencies
- **Intrinsic Effects**

Challenges of IGBT Switching Trajectory Shaping (1)

Basic IGBT behavior

- Non-Linearities
- Temperature DependenciesOperating Point Dependencies

Current / voltage time derivatives:

•
$$\frac{\mathrm{d}i_{\mathrm{C}}}{\mathrm{d}t} = \frac{i_{\mathrm{G}}}{C_{\mathrm{GE}}} \left(g_m + v_{\mathrm{Ge}} \frac{\mathrm{d}g_m}{\mathrm{d}v_{\mathrm{Ge}}} \right)$$

$$\frac{\mathrm{d}v_{\mathrm{CE}}}{\mathrm{d}t} = -\frac{i_{\mathrm{G}}}{C_{\mathrm{GC}}}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Challenges of IGBT Switching Trajectory Shaping (2)

Intrinsic IGBT effects

- Turn-off with slightly larger gate resistor
- Lower dv_{CE}/dt
- Longer lasting voltage slope
- More stored charge is extracted
- Desaturation of the device
- Faster current slope (higher overvoltage) for Trench-Fieldstop IGBTs !
- Lowest delay times / switching losses / EMI and SOA operation at all operating points only for Active Gate Drive !

State-of-the-Art IGBT Trajectory Control

- Passive Gate Drive
- Open-Loop Gate Drive
- Closed-Loop Gate Drive

Classification of Gate Drive Circuits

Proposed Gate Drive

Passive Gate Drive

Adjustments

- External gate resistor R_G
- Added Miller capacitance C_{GC}
- Added gate capacitance C_{Ge}
- Advantages
- Low complexity
- Inexpensive
- Disadvantages
- No compensation of parameter variations
- Higher switching losses
- Large driving losses

- Current / voltage time derivatives:
- $\frac{\mathrm{d}i_{\mathrm{C}}}{\mathrm{d}t} = \frac{i_{\mathrm{G}}}{C_{\mathrm{GE,tot}}} \left(g_m + v_{\mathrm{Ge}} \frac{\mathrm{d}g_m}{\mathrm{d}v_{\mathrm{Ge}}} \right)$
- $\frac{\mathrm{d}v_{\mathrm{CE}}}{\mathrm{d}t} = -\frac{i_{\mathrm{G}}}{C_{\mathrm{GC,tot}}}$

Open-Loop Gate Drive

- Switchable multiple gate resistors
- Gate voltage / current profile
- Gate current injection
- Fixed profile
- Event feedback
- Operating point feedback

Advantages

- Low complexity
- Disadvantages
- No compensation of non-linearities
 Compromise in order to never exceed max. di_c/dt or dv_{CE}/dt for varied T_i , i_o , v_{DC}

Closed-Loop Gate Drive – Analog

- v_{cF} and/or i_c reference profile
- Feedback(s) to analog control loop
- v_{CE} measurement by voltage divider i_{C} measurement by current sensor

- Advantages
- Direct control of v_{CE} (and i_c)
 Compensation of non-linearities

- Bandwidth limit / losses of current sensors
 Complex generation of reference signal
- if v_{ce} and i_c control are required

Closed-Loop Gate Drive – Digital

- Measurement and A/D-conversion of v_{CF}, i_C, v_{Ge}
- ▶ i_c and v_{cF} control via gate current
- Digital control unit (FPGA)

Advantages

- High flexibility due to digital control unit, e.g. reference profiles or transition from i_c to v_{ce} control – Compensation of non-linearities

Disadvantages

- Large delays of A/D and D/A conversions
- Expensive
- Real-time control not feasible for switching times faster than 2 µs
- Alternative: adaptive / learning control

Closed-Loop Gate Drive – Voltage/Current Slopes

dv_{CE}/dt control and/or di_c/dt control

Advantages

- Constant reference values
- Passive measurement circuits
- Compensation of non-linearities and parameter variations

Disadvantages

- Active switchover between the two control loops
- Transition point for switchover from di_c/dt control to dv_{ce}/dt control must be detected accurately

[31-41]

19

 $v_{\rm CE}$

Proposed Closed-Loop Gate Drive

Basic Idea / Principle of Operation

- **Experimental Results**
- **Stability Analysis**

Clamped Inductive Load Switching - Review

Assumption

- Load current i_o = const. in the switching interval for inductive load switching
- Observation
- dv_{cE}/dt = 0 during current slope di_c/dt = 0 during voltage slope

Basic idea

- For di_c/dt control and dv_{cE}/dt control both feedback loops can be active simultaneously
 No need for active switchover
- between the two control loops

Turn-off

Power Electronic Systems Laboratory

Block Diagram

Main control loop

- Combined di_c/dt and dv_{CE}/dt feedbacks
 Individual feedback gains (k_i, k_v)
 Common control reference signal v_{ref,d/dt}

- Additional control loop
- Gate current control during turn-on/off delay
 Minimizes turn-on/off delay times
 If activated, d/dt-control reference is set to zero

22

 $v_{\rm CE}$

Control Reference / Set-Points

$$\frac{\mathrm{d}i_{\mathrm{C}}}{\mathrm{d}t_{\mathrm{ref}}} = \frac{\nu_{\mathrm{ref},\mathrm{d/dt}}}{k_{\mathrm{i}}\cdot L_{\mathrm{E}}}$$

Voltage slope

 $v_{\rm ref,d/dt}$ dv_{CE} dt ref $k_{\rm v}$

- **Reference signal v**_{ref,d/dt}
- Turn-on: positive $(+di_c/dt, -dv_{CE}/dt)$ Turn-off: negative $(+dv_{CE}/dt, -di_c/dt)$

Circuit Diagram

- Passive measurements
- dv_{CE}/dt: C_v in voltage path (CR high-pass filter)
- di_c/dt: L_E in current path (bond wire inductance)
- $-i_{G}$: R_s in gate path (shunt)
- **Error signal**
- Passive resistor network

Control amplifier

 Single fast op-amp wired as a PI-controller

di/dt Clipping Circuit

- **Exception / Issue**
- di/dt is not zero at turn-on after diode reverse recovery current peak - Influence on dv/dt control

Solution: clipping circuit

- S_c closed during turn-on transients S_c open at turn-off
- Neg. di/dt values (pos. voltages of v_{Ee}) at turn-on are limited to volt. prop. to v_{Dc}
 Pos. di/dt values are not affected

Closed-Loop Gate Drive – Block Diagram

Proposed Closed-Loop Gate Drive

- **Basic Idea / Principle of Operation**
- **Experimental Results**
- **Stability Analysis**

Closed-Loop Gate Drive - Hardware

PCB Dimensions: 5 cm x 13 cm

Experimental Results – Turn-On Transients

- Variation of load current
- di/dt = 2 kA/µs dv/dt = -0.5 kV/µs
- Outcome
- Independent control of current and voltage slope!
- Natural transition from di/dt to dv/dt control - Low overshoot in dv/dt
- after transition
- No load current dependency at i_c and v_{CE} , but on v_{Ge} (higher v_{Ge} at higher current)

Experimental Results – Turn-Off Transients

- Variation of load current
- $di/dt = -1 kA/\mu s$ $dv/dt = 2 kV/\mu s$
- Outcome
- Independent control of current and voltage slope!
- Natural transition from dv/dt to di/dt control - Low overshoot in di/dt
- after transition
- No load current dependency at i_c and v_{CE} , but on v_{Ge} (higher v_{Ge} at higher current)

Experimental Results – Individual Variation of References

Turn-Off: Variation of di/dt

Turn-On: Variation of dv/dt

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Experimental Results - Si vs. SiC Diode @ Turn-On

Si: 1 kA/µs, -2 kV/µs

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

► SiC: 1 kA/µs, -2 kV/µs

Experimental Results – R_G vs. Closed-Loop @ Turn-On (1)

▶ R_G: 2 kA/µs @ 400A

Closed-Loop: 2 kA/µs, -1 kV/µs

No influence on dv/dt with R_G (selected to achieve 2 kA/µs @ 400A)
 Similar switching losses since di/dt and dv/dt are similar in both cases

Experimental Results – R_G vs. Closed-Loop @ Turn-On (2)

R_G: 1 kA/µs @ 400A

- No influence on dv/dt with R_{G} (selected to achieve 1 kA/µs @ 400A) - \approx 50 % of switching losses with closed-loop control compared to R_{G} !

Closed-Loop: 1 kA/µs, -2 kV/µs

Experimental Results – R_G vs. Closed-Loop @ Turn-Off (1)

▶ R_G: -2 kA/µs @ 400A

Closed-Loop: 1 kV/µs, -2 kV/µs

- No influence on dv/dt with R_{G} (selected to achieve -2 kA/µs @ 400A) - Similar switching losses since di/dt and dv/dt are similar in both cases

Experimental Results – R_G vs. Closed-Loop @ Turn-Off (2)

▶ R_G: -1 kA/µs @ 400A

- No influence on dv/dt with R_{g} (selected to achieve -1 kA/µs @ 400A) - \approx 50 % of switching losses with closed-loop control compared to R_{g} !

Closed-Loop: 2 kV/µs, -1 kA/µs

Considerations for Bridge Leg Configurations

Main goals

- Minimal interlock delay time
- No distortion of the output voltage (volt-seconds according to gate signal)
- Transition depends on load current direction
 - Need for additional supperordinate control

- **Solution for conventional gate drives**
- Modifications of closed-loop di/dt and dv/dt gate drive are needed: [46]

Short Circuit – Types and Detection

Hard Switching Failure

- IGBT turns-on to an already existing short circuit at the load terminals
- Detection by means of current i_c measurement (active integration of voltage across bond wire inductance or Rogowski coil voltage)
 - i_c > i_{c,max}

Failure Under Load

- IGBT is conducting current when the short circuit occurs at the load terminals
- Detection by means of desaturation detection (v_{CE} > v_{CE,max}) with voltage limiting circuit
 - On-state: v_{CE,clip} = V_{CE} + V_D
 - Off-state: v_{CE,clip} = v₊

Experimental Results – Hard Switching Failure

- Turn-on into short circuit of opposite IGBT module (v_{GE,opp} = 15 V)
- Turn-on current slope actively controlled to di/dt = 1 kA/µs Short circuit detected and turned-off with di/dt = -1 kA/µs

- Defined turn-off di/dt
 Constant turn-off overvoltage
 SOA operation ensured

Proposed Closed-Loop Gate Drive

- **Basic Idea / Principle of Operation**
- **Experimental Results**
- **Stability Analysis**

Control-Oriented Modelling: Gate Drive

Transfer functions

- Op-amp: lim. gain-bandwidth product

$$G_{\rm OP} = \frac{A_{\rm DC,OP}}{s\frac{A_{\rm DC,OP}}{2\pi f_{\rm T,OP}} + 1}$$

- *PI*-controller

$$G_{PI} = \frac{G_{\rm OP}(sP+I)}{s(G_{\rm OP}+P)+I}$$

- Output amplifier $G_{AMP} = \frac{1}{s_{\frac{1}{2\pi f_{c,AMP}} + 1}}$
- dv_{CE}/dt measurement $H_{V,HP} = \tau_V \frac{s}{s\tau_V + 1}$
- di_c/dt measurement $H_{I,\text{HP}} = \tau_I s$

Control-Oriented Modeling: IGBT (small-signal)

Key features

- Considering parasitic inductances of the bond wires and the electrical terminals
- Valid in the active region
 - i_c: voltage controlled current source
 - v_{CE}: feedback via Miller-capacitance

General limits

- Valid at selected (i.e. worst case) operating point
- Not considering dynamic device behavior (e.g. dependency on stored charge)
- Needed transfer functions
- v_{Ge} (input) to v_{CE} (output) $- v_{Ge}$ (input) to i_{c} (output)

IGBT (small-signal) Transfer Functions

Voltage slope TF (assuming di_c/dt = 0)

$$G_V = \frac{V_{\rm CE}}{V_{\rm Ge}} = \frac{a_3 s^3 + a_2 s^2 + a_1 s + a_0}{b_3 s^3 + b_2 s^2 + b_1 s + b_0}$$

$$\begin{aligned} a_{0} &= -g_{m}R_{O} \\ a_{1} &= R_{O}C_{GC} \\ a_{2} &= L_{B}(C_{GE} + C_{GC}(1 + g_{m}R_{O})) \\ a_{3} &= L_{B}R_{O}C_{t} \\ b_{0} &= 1 \\ b_{1} &= R_{O}(C_{GC} + C_{O}) + R_{G}(C_{GE} + C_{GC}(1 + g_{m}R_{O})) \\ b_{2} &= R_{O}R_{G}C_{t} + (L_{Ge} + L_{B})(C_{GE} + C_{GC}(1 + g_{m}R_{O})) \\ b_{3} &= R_{O}C_{t}(L_{Ge} + L_{B}) \\ C_{t} &= C_{GE}C_{GC} + C_{GE}C_{O} + C_{GC}C_{O}, \end{aligned}$$

Current slope TF (assuming dv_{CE}/dt = 0)

$$G_I = \frac{I_{\rm C}}{V_{\rm Ge}} = \frac{c_3 s^3 + c_2 s^2 + c_1 s + c_0}{d_4 s^4 + d_3 s^3 + d_2 s^2 + d_1 s + d_0}$$

$$\begin{split} c_{0} &= g_{m}R_{O} \\ c_{1} &= -R_{O}C_{GC} \\ c_{2} &= -L_{B}(C_{GE} + C_{GC}(1 + g_{m}R_{O})) \\ c_{3} &= -L_{B}R_{O}C_{t} \\ d_{0} &= R_{O} \\ d_{1} &= L_{CE} + L_{B}(1 + g_{m}R_{O}) + R_{G}R_{O}(C_{GE} + C_{GC}) \\ d_{2} &= R_{G}(L_{CE} + L_{B})(C_{GE} + C_{GC}(1 + g_{m}R_{O})) \\ &+ R_{O}(C_{GE}(L_{B} + L_{Ge}) + C_{GC}(L_{CE} + L_{Ge}) \\ &+ C_{CE}(L_{CE} + L_{B})) \\ d_{3} &= R_{G}R_{O}C_{t}(L_{CE} + L_{B}) \\ &+ L_{t}(C_{GE} + C_{GC}(1 + g_{m}R_{O})) \\ d_{4} &= L_{t}R_{O}C_{t} \\ C_{t} &= C_{GE}C_{GC} + C_{GE}C_{O} + C_{GC}C_{O} \\ L_{t} &= L_{CE}L_{Ge} + L_{CE}L_{B} + L_{Ge}L_{B}, \end{split}$$

Block Diagrams and Closed-Loop Transfer Functions

Voltage slope

$$G_{V,\text{OL}} = \frac{V_{\text{d}v/\text{d}t}}{V_{\text{d}/\text{d}t,\text{ref}}} = G_{PI}G_{\text{AMP}}G_VH_{V,\text{HP}}$$

Current slope

$$G_{I,\text{OL}} = \frac{V_{\text{d}i/\text{d}t}}{V_{\text{d}/\text{d}t,\text{ref}}} = G_{PI}G_{\text{AMP}}G_{I}H_{I,\text{HP}}$$

Control performance

- Strong dependency on IGBT module (G_V, G_I) parasitics !

IGBT Modules – Internal Construction

Parasitic inductances

- Present in power and gate wiring
- Different for different modules (A, B, C); 1.2 kV, 400-450 A
- Affect the stability / control performance of the closed-loop control

Power Terminals - L_{DC+/DC-} = 20.9 ... 27.8 nH

IGBT Modules – Internal Construction

Gate Wiring

$$- L_{Ge,LS/HS} = 54.2 \dots 121.3 \, nH$$

* Using a low-inductive coaxial connection to the foot ends of the gate driving terminals reduces the gate inductance by 26 nH, i.e. from 56 nH to 30 nH.

Closed-Loop Transfer Functions – Voltage Slope

High gate loop inductance is unfavorable

- High *P* and *I* values of the controller needed
- Lower control bandwidth f_c (limited gain-bandwidth product of op-amp)
- Practical implementation: limited output voltage of op-amp and amplifier (+/- 15 V)

	P	Ι
IGBT (A)	3.75	$12.9\cdot 10^7$
IGBT (B)*	1.34	$8.57 \cdot 10^7$
IGBT (C)	5.93	$14.5 \cdot 10^{7}$

Closed-Loop Transfer Functions – Current Slope (1)

- Unsatisfying performance !
- Only one *PI*-controller (here adjusted for the voltage slope), but two different control loops
- Solution 1: adjustment of controller for the more sensitive loop,
 i.e. the current loop in this case
- Solution 2: adding gate- or Miller capacitance as low-pass filters to the corresponding control loop (gate: di_c/dt; Miller: dv_{ce}/dt)

Closed-Loop Transfer Functions – Current Slope (2)

- **Optimal performance for voltage and current control !**
- Same *P* and *I*-parameters as before, but with additional gate capacitance - Additional degree of freedom for
- individual control loop optimization
- Disadvantages
 - Additional gate driving losses
 - Difficulty of inserting a capacitor close to the IGBT chip

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

IGBT Module Comparison at Closed-Loop Switching

- Similar switching performance for different IGBT modules
- Lowest gate loop inductance -> Highest control bandwidth
- Most accurately controlled voltage and current slopes
- Most stable control performance
 Here: no additional gate capacitance was used to optimize the current control loop

Stability Analysis for Parameter Variations (1)

Sensitivity to the *PI*-controller gain

- Increasing of P up to 4-times nominal value

Not critical

- Pivotal poles are shifted towards the right s-half plane
- *P* is properly adjusted initially *P* is kept constant
- Factor 4 is far away from tolerances

Stability Analysis for Parameter Variations (2)

Sensitivity to the Miller capacitance

- Decreasing of C_{GC} down to 0.25-times nominal value

- Worst case assumption of C_{GC} (for high values of v_{CE})
- Pivotal poles are shifted towards the right s-half plane
- System is still stable
- Value of C_{GC} can be extracted from datasheet, thus no stability issues are expected

Future Trends

IGBT Protection
 IGBT Monitoring / Online Measurement

IGBT Protection

- Overcurrent: i_c at turn-on
- Active integration of Rogowski coil voltage or voltage across main/aux. Emitter terminals
- **Desaturation:** v_{CE,sat}
- Accurate measurement of v_{CE} in on-state with clipping circuit

- Overtemperature: T_i
- Estimation based on on-state characteristics

Health analysis for protection

IGBT Monitoring / Online Measurement

- Feedback to main controller: d_{out}
- Switched current i_c
- On-state voltage v_{CE,on}
 Estimated junction temperature T_i
- Health state

- Superordinate control by main controller
- Converter control at max. output power, i.e. at max. junction temperature instead of max. rated power, with T_i feedback

Summary

- Closed-loop di/dt and dv/dt gate drive
 ensures a defined and safe switching behavior
 enables a desired trade-off between switching losses and EMI

Summary

- Closed-loop di/dt and dv/dt gate drive
 ensures a defined and safe switching behavior
 enables a desired trade-off between switching losses and EMI

- [1] L. Chen and F. Z. Peng, "Switching loss analysis of closed-loop gate drive," in *Proc. of the 25th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC)*, Palm Springs, CA, USA, Feb. 2010, pp. 1119–1123.
- [2] J. D. Kagerbauer and T. M. Jahns, "Development of an active dv/dt control algorithm for reducing inverter conducted EMI with minimal impact on switching losses," in *Proc. of the 38th Annual IEEE Power Electronics Specialists Conf. (PESC)*, Orlando, FL, USA, Jun. 2007, pp. 894–900.
- [3] A. Consoli, S. Musumeci, G. Oriti, and A. Testa, "An innovative EMI reduction design technique in power converters," *IEEE Trans. Electromagn. Compat.*, vol. 38, no. 4, pp. 567–575, Nov. 1996.
- [4] A. Galluzzo, M. Melito, G. Belverde, S. Musumeci, A. Raciti, and A. Testa, "Switching characteristic improvement of modern gate controlled devices," in Proc. of the 5th European Conf. on Power Electronics and Application (EPE), Brighton, UK, Sep. 1993, pp. 374–379.
- [5] D. Giandomenico, D. S. Kuo, J. Choi, and C. Hu, "Analysis and prevention of anomalous oscillations in a vertical power MOSFET," in *Proc. of the 11th Annual Int. Power Electronics Conf. (POWERCON)*, Dallas, TX, USA, Apr. 1984, pp. 1–9.
- [6] **R. Bayerer**, "Steuerung von Leistungshalbleiter (in German)," in *Proc. of the ECPE Workshop "Ansteuer- und Schutzschaltungen für MOSFET und IGBT"*, Nuremberg, Germany, Feb. 2010, pp. 38–45.
- [7] **R. Bayerer**, "Switching behavior of power switches (IGBT, MOŠFET)," in *Proc. of the ECPE Workshop "Electronics around the Power Switch: Gate Drivers, Sensors and Control"*, Munich, Germany, Jun. 2011, pp. 23–25.
- [8] **R. Herzer and A. Wintrich**, "IGBT gate drive technologies principles and applications," in *Tutorial at the Power Conversion and Intelligent Motion Conf. (PCIM Europe)*, Nuremberg, Germany, May 2012, p. 105.
- [9] M. Bohlländer, R. Bayerer, J. Lutz, and T. Raker, "Desaturated switching of trench fieldstop IGBTs," in Proc. of the Power Conversion and Intelligent Motion Conf. (PCIM Europe), Nuremberg, Germany, May/Jun. 2006, pp. 37–42.
- [10] A. Volke and M. Hornkamp, IGBT Modules Technologies, Driver and Application, 1st ed. Infineon Technologies AG, Munich, 2011.

- [11] C. Licitra, S. Musumeci, A. Raciti, A. U. Galluzzo, R. Letor, and M. Melito, "A new driving circuit for IGBT devices," *IEEE Trans. Power Electron.*, vol. 10, no. 3, pp. 373–378, May 1995.
- [12] S. Takizawa, S. Igarashi, and K. Kuroki, "A new di/dt control gate drive circuit for IGBTs to reduce EMI noise and switching losses," in Proc. of the 29th Annual IEEE Power Electronics Specialists Conf. (PESC), vol. 2, Fukuoka, Japan, May 1998, pp. 1443–1449.
- [13] R. Hemmer, "Intelligent IGBT drivers with exceptional driving and protection features," in *Proc. of the 13th European Conf. on Power Electronics and Application (EPE)*, Barcelona, Spain, Sep. 2009.
- [14] S. Musumeci, A. Raciti, A. Testa, A. Galluzzo, and M. Melito, "A new adaptive driving technique for high current gate controlled devices," in Proc. of the 9th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Orlando, FL, USA, Feb. 1994, pp. 480–486.
- [15] S. Musumeci, A. Raciti, A. Testa, A. Galluzzo, and M. Melito, "Switching-behavior improvement of insulated gatecontrolled devices," *IEEE Trans. Power Electron.*, vol. 12, no. 4, pp. 645–653, Jul. 1997.
- [16] V. John, B.-S. Suh, and T. A. Lipo, "High performance active gate drive for high power IGBTs," in *Proc. of the 33rd IEEE Industry Applications Society Annual Meeting (IAS)*, vol. 2, St. Louis, MO, USA, Oct. 1998, pp. 1519–1529.
- [17] V. John, B.-S. Suh, and T. A. Lipo, "High-performance active gate drive for high-power IGBT's," IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1108–1117, Sep./Oct. 1999.
- [18] G. Schmitt, R. Kennel, and J. Holtz, "Voltage gradient limitation of IGBTs by optimised gate-current profiles," in Proc. of the 39th Annual IEEE Power Electronics Specialists Conf. (PESC), Rhodes, Greece, Jun. 2008, pp. 3592–3596.
- [19] G. Schmitt, "Ansteuerung von Hochvolt-IGBTs über optimierte Gatestromprofile (in German)," Ph.D. dissertation, University of Wuppertal, Germany, 2009.
- [20] B. Wittig and F. W. Fuchs, "Analysis and comparison of turn-off active gate control methods for low-voltage power MOSFETs with high current ratings," *IEEE Trans. Power Electron.*, vol. 27, no. 3, pp. 1632–1640, Mar. 2012.

- [21] N. Idir, R. Bausiere, and J. J. Franchaud, "Active gate voltage control of turn-on di/dt and turn-off dv/dt in insulated gate transistors," *IEEE Trans. Power Electron.*, vol. 21, no. 4, pp. 849–855, Jul. 2006.
- [22] A. N. Githiari, R. J. Leedham, and P. R. Palmer, "High performance gate drives for utilizing the IGBT in the active region," in *Proc. of the 27th Annual IEEE Power Electronics Specialists Conf. (PESC)*, vol. 2, Baveno, Italy, Jun. 1996, pp. 1754–1759.
- [23] P. R. Palmer and H. S. Rajamani, "Active voltage control of IGBTs for high power applications," *IEEE Trans. Power Electron.*, vol. 19, no. 4, pp. 894–901, Jul. 2004.
- [24] Y. Wang, A. T. Bryant, P. R. Palmer, S. J. Finney, M. Abu-Khaizaran, and G. Li, "An analysis of high power IGBT switching under cascade active voltage control," in Proc. of the 40th IEEE Industry Applications Society Annual Meeting (IAS), vol. 2, Hong Kong, China, Oct. 2005, pp. 806–812.
- [25] Y. Wang, P. R. Palmer, A. T. Bryant, S. J. Finney, M. S. Abu-Khaizaran, and G. Li, "An analysis of high-power IGBT switching under cascade active voltage control," *IEEE Trans. Ind. Appl.*, vol. 45, no. 2, pp. 861–870, Mar./Apr. 2009.
- [26] Y. Wang, P. R. Palmer, T. C. Lim, S. J. Finney, and A. T. Bryant, "Realtime optimization of IGBT/diode cell switching under active voltage control," in *Proc. of the 41st IEEE Industry Applications Society Annual Meeting (IAS)*, vol. 5, Tampa, FL, USA, Oct. 2006, pp. 2262–2268.
- [27] H. Kuhn, T. Koneke, and A. Mertens, "Considerations for a digital gate unit in high power applications," in *Proc. of the* 39th Annual IEEE Power Electronics Specialists Conf. (PESC), Rhodes, Greece, Jun. 2008, pp. 2784–2790.
- [28] H. Kuhn, T. Koneke, and A. Mertens, "Potential of digital gate units in high power appliations," in *Proc. of the 13th Int. Conf. on Power Electronics and Motion Control (EPEPEMC)*, Poznan, Poland, Sep. 2008, pp. 1458–1464.
- [29] H. Kuhn, "Adaptive Ansteuerverfahren für Hochleistungs-IGBTs mit einer digitalen Treibereinheit (in German)," Ph.D. dissertation, University of Hannover, Germany, 2011.
- [30] L. Dang, H. Kuhn, and A. Mertens, "Digital adaptive driving strategies for high-voltage IGBTs," in Proc. of the IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, Sep. 2011, pp. 2993–2999.

- [31] J. P. Berry, "MOSFET operating under hard switching mode: voltage and current gradients control," in *Proc. of the Symposium on Materials and Devices for Power Electronics (EPE-MADEP)*, Firenze, Italy, Sep. 1991, pp. 130–134.
- [32] C. Gerster, P. Hofer, and N. Karrer, "Gate-control strategies for snubberless operation of series connected IGBTs," in *Proc. of the 27th Annual IEEE Power Electronics Specialists Conf. (PESC)*, vol. 2, Baveno, Italy, Jun. 1996, pp. 1739–1742.
- [33] L. Chen, "Intelligent gate drive for high power MOSFETs and IGBTs," Ph.D. dissertation, Michigan State University, USA, 2008.
- [34] L. Chen and F. Z. Peng, "Closed-loop gate drive for high power IGBTs," in *Proc. of the 24th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC)*, Washington, DC, USA, Feb. 2009, pp. 1331–1337.
- [35] L. Chen, B. Ge, and F. Z. Peng, "Modeling and analysis of closed-loop gate drive," in *Proc. of the 25th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC)*, Palm Springs, CA, USA, Mar. 2010, pp. 1124–1130.
- [36] K. Fink, "Untersuchung neuartiger Konzepte zur geregelten Ansteuerung von IGBTs (in German)," Ph.D. dissertation, Berlin Institute of Technology, Germany, 2010.
- [37] K. Fink and S. Bernet, "Advanced gate drive unit with closed-loop di_c/dt control," IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2587–2595, May 2013.
- [38] S. Park and T. M. Jahns, "Flexible dv/dt and di/dt control method for insulated gate power switches," in *Proc. of the* 36th IEEE Industry Applications Society Annual Meeting (IAS), vol. 2, Chicago, IL, USA, Sep./Oct. 2001, pp. 1038–1045.
- [39] S. Park and T. M. Jahns, "Flexible dv/dt and di/dt control method for insulated gate power switches," *IEEE Trans. Ind. Appl.*, vol. 39, no. 3, pp. 657–664, May./Jun. 2003.
- [40] C. Dörlemann and J. Melbert, "New IGBT-driver with independent dv/dt- and di/dt-feedback-control for optimized switching behavior," in *Proc. of the 2nd Int. Conf. on Integrated Power Systems (CIPS)*, Bremen, Germany, Jun. 2002, pp. 107–114.

- [41] C. Dörlemann, "Geregelte Ansteuerung von Insulated Gate Bipolar Transistoren (IGBT) Anwendung im Frequenzumrichter- (in German)," Ph.D. dissertation, Ruhr University Bochum, Germany, 2002.
- [42] T. Kjellqvist, S. Östlund, and S. Norrga, "Active snubber circuit for source commutated converters utilizing the IGBT in the linear region," *IEEE Trans. Power Electron.*, vol. 23, no. 5, pp. 2595–2601, Sep. 2008.
- [43] S. K. Biswas, B. Basak, and K. S. Rajashekara, "Gate drive methods for IGBTs in bridge configurations," in Proc. of the 29th IEEE Industry Applications Society Annual Meeting (IAS), Denver, CO, USA, Oct. 1994, pp. 1310–1316.
- [44] Y. Lobsiger and J. W. Kolar, "Closed-loop IGBT gate drive featuring highly dynamic di/dt and dv/dt control," in Proc. of the IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, Sep. 2012, pp. 4754–4751.
- [45] Y. Lobsiger and J. W. Kolar, "Stability and robustness analysis of d/dt-closed-loop IGBT gate drive," in *Proc. of the* 28th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Long Beach, CA, USA, Mar. 2013, pp. 2682– 2689.
- [46] Y. Lobsiger and J. W. Kolar, "Closed-loop di/dt & dv/dt control and dead time minimization of IGBTs in bridge leg configuration," to be published in *Proc. of the 14th IEEE Workshop on Control and Modeling for Power Electronics* (*COMPEL*), Salt Lake City, UT, USA, Jun. 2013.

Contact Yanick Lobsiger lobsiger@lem.ee.ethz.ch www.pes.ee.ethz.ch

Questions ?

