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► Switching Trajectory Trade-Off / Challenges 
► State-of-the-Art IGBT Switching Trajectory Control 
► New Closed-Loop di/dt and dv/dt IGBT Gate Drive 
► Future Trends 

 



► Equivalent circuit for switching trajectories 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Main goals: lowest delay times / switching losses / EMI  &  SOA operation at all 
 operating points (load current levels, junction temperatures, …) 

Clamped Inductive Load (Hard) Switching 
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►► 
 



Trade-Off / Main Goals 
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► Low Switching Delay Times 
► Low Switching Losses 
► Low EMI 
► SOA Operation 



Switching Delay Times / Switching Losses 

► Fast switching (small gate resistor) 
 

– High di/dt and dv/dt values 
– Low switching delay times td 
– Low switching losses Eon/off 

► Slow switching (large gate resistor) 
 

– Low di/dt and dv/dt values 
– High switching delay times td 
– High switching losses Eon/off 
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Turn-On – Diode Peak Reverse Recovery Current irr 

► Turn-on: freewheeling diode commutation 
 

– diC/dt affects diode peak reverse recovery current irr 
– diD/dt affects diode switching overvoltage 
– SOA operation must be guaranteed 

 
 

𝒊𝐫𝐫 ≈ 𝑸𝐫𝐫

𝐝𝒊𝐂

𝐝𝒕
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►
 

►
 ►

 

►
 



Turn-Off – Overvoltage vov 

► Turn-off: transistor switching overvoltage due to stray inductance Ls 
 

– diC/dt affects transient overvoltage vov 
– SOA operation must be guaranteed 

 

 

𝒗𝐨𝐯 = −𝑳𝐬

𝐝𝒊𝐂

𝐝𝒕
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►
 

►
 



Electromagnetic Compatibility (EMC) 

► Restriction of di/dt and dv/dt  
 

– Limits HF emissions / filtering effort 
– Increases switching losses 

 

► Conducted CM EMI dependent on dvCE/dt 
► Radiated EMI dependent on diC/dt 

 
– Direct impact on 2nd corner frequency 
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Source: [2] 
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[2-3] 



► Fast switching (small gate resistor) 
 

– Low switching delay times td 
– Low switching losses Eon/off 

 
 
 
 
 
 
 
 
 
 

 
 
► Optimal switching trajectories 

 
– Independent control of di/dt and dv/dt  

individually for turn-on and turn-off ! 

► Slow switching (large gate resistor) 
 

– Low peak reverse recovery current irr 
– Low turn-off overvoltage vov 
– Low EMI 

Switching Trajectory Trade-Off / Summary 
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◂► 



Challenges of Switching Trajectory Shaping 

10 

► Non-Linearities 
► Temperature Dependencies 
► Operating Point Dependencies 
► Intrinsic Effects 



Challenges of IGBT Switching Trajectory Shaping (1) 

► Basic IGBT behavior 
 

– Non-Linearities 
– Temperature Dependencies 
– Operating Point Dependencies 

► Current / voltage time derivatives: 
 


𝐝𝒊𝐂

𝐝𝒕
=

𝒊𝐆

𝑪𝐆𝐄
𝒈𝒎 + 𝒗𝐆𝐞

𝐝𝒈𝒎

𝐝𝒗𝐆𝐞
 

 


𝐝𝒗𝐂𝐄

𝐝𝒕
= −

𝒊𝐆

𝑪𝐆𝐂
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Challenges of IGBT Switching Trajectory Shaping (2) 

► Intrinsic IGBT effects 
 

 Turn-off with slightly larger gate resistor 
– Lower dvCE/dt 

 
– Longer lasting voltage slope 
– More stored charge is extracted 
– Desaturation of the device 

 
– Faster current slope (higher overvoltage)  

for Trench-Fieldstop IGBTs ! 
 
 
 

 Lowest delay times / switching losses / EMI 
and SOA operation at all operating points 
only for Active Gate Drive ! 
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State-of-the-Art IGBT Trajectory Control 
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► Passive Gate Drive 
► Open-Loop Gate Drive 
► Closed-Loop Gate Drive 



Classification of Gate Drive Circuits 
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► Proposed Gate Drive 
 



Passive Gate Drive 

► Adjustments 
 

– External gate resistor RG 
– Added Miller capacitance CGC 
– Added gate capacitance CGe 

 
 

► Advantages 
 

– Low complexity 
– Inexpensive 

 
► Disadvantages 

 
– No compensation of parameter variations 
– Higher switching losses 
– Large driving losses 

► Current / voltage time derivatives: 
 


𝐝𝒊𝐂

𝐝𝒕
=

𝒊𝐆

𝑪𝐆𝐄,𝐭𝐨𝐭
𝒈𝒎 + 𝒗𝐆𝐞

𝐝𝒈𝒎

𝐝𝒗𝐆𝐞
 

 


𝐝𝒗𝐂𝐄

𝐝𝒕
= −

𝒊𝐆

𝑪𝐆𝐂,𝐭𝐨𝐭
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Open-Loop Gate Drive 

► Switchable multiple gate resistors 
► Gate voltage / current profile 
► Gate current injection 

 
– Fixed profile 
– Event feedback 
– Operating point feedback 

 
 

► Advantages 
 

– Low complexity 
 

► Disadvantages 
 

– No compensation of non-linearities 
– Compromise in order to never exceed max. 

diC/dt or dvCE/dt for varied Tj, io, vDC 
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Closed-Loop Gate Drive – Analog 

► vCE and/or iC reference profile 
► Feedback(s) to analog control loop 

 
– vCE measurement by voltage divider 
– iC measurement by current sensor 

 
 
 
 
 
 
 

 
 

► Advantages 
 

– Direct control of vCE (and iC) 
– Compensation of non-linearities 

 
 
 
 
 
 
 
 
 
 
 
 
 

► Disadvantages 
 

– Bandwidth limit / losses of current sensors 
– Complex generation of reference signal  

if vCE and iC control are required 
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[22-26] 
 



Closed-Loop Gate Drive – Digital 

► Measurement and A/D-conversion of vCE, iC, vGe 
► iC and vCE control via gate current 
► Digital control unit (FPGA) 
 
 
► Advantages 

 
– High flexibility due to digital control unit, 

e.g. reference profiles or transition 
from iC to vCE control 

– Compensation of non-linearities 
 

► Disadvantages 
 

– Large delays of A/D and D/A conversions 
– Expensive 
– Real-time control not feasible for  

switching times faster than 2 µs 
– Alternative: adaptive / learning control 
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Closed-Loop Gate Drive – Voltage/Current Slopes 

► dvCE/dt control   and/or   diC/dt control 
 
 
 
 
 
 
 
 
 
 

 
 

► Advantages 
 

– Constant reference values 
– Passive measurement circuits 
– Compensation of non-linearities and 

parameter variations 

 
 
 
 
 
 
 
 
 
 
 
 
 

► Disadvantages 
 

– Active switchover between the two control loops  
– Transition point for switchover from diC/dt control  

to dvCE/dt control must be detected accurately 
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Proposed Closed-Loop Gate Drive 
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► Basic Idea / Principle of Operation 
► Experimental Results 
► Stability Analysis 

[44-46] 
 



 Turn-on 
 
 
 
 
 
 
 

 
 Turn-off 

Clamped Inductive Load Switching - Review 

 
► Assumption 

 
– Load current io = const. in the switching 

interval for inductive load switching 
 

► Observation 
 

– dvCE/dt = 0 during current slope 
– diC/dt = 0 during voltage slope 

 
► Basic idea 

 
– For diC/dt control and dvCE/dt control 

both feedback loops can be 
active simultaneously 

– No need for active switchover  
between the two control loops 
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Block Diagram 

 
 
 
 
 
 
 
 
 
 

 
 
 

► Main control loop 
 

– Combined diC/dt and dvCE/dt feedbacks 
– Individual feedback gains (ki, kv) 
– Common control reference signal vref,d/dt 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
► Additional control loop 

 
– Gate current control during turn-on/off delay 
– Minimizes turn-on/off delay times 
– If activated, d/dt-control reference is set to zero 
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►
 



Control Reference / Set-Points 

 
 
 
 
 
 
 
 
 
 
 
 

 
► Voltage slope 

 


𝐝𝒗𝐂𝐄

𝐝𝒕 𝐫𝐞𝐟
= −

𝒗𝐫𝐞𝐟,𝐝/𝐝𝐭

𝒌𝐯
 

 
 
 
 
 
 
 
 
 
 
 
 

 
► Reference signal vref,d/dt 

 
– Turn-on:  positive (+diC/dt, -dvCE/dt) 
– Turn-off: negative (+dvCE/dt, -diC/dt) 
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► Current slope 

 


𝐝𝒊𝐂

𝐝𝒕 𝐫𝐞𝐟
=  

𝒗𝐫𝐞𝐟,𝐝/𝐝𝐭

𝒌𝐢∙𝑳𝐄
 



Circuit Diagram 

 
► Passive measurements 

 
– dvCE/dt: Cv in voltage path 

(CR high-pass filter) 
– diC/dt: LE in current path 

(bond wire inductance) 
– iG: Rs in gate path (shunt) 

 
 

► Error signal 
 

– Passive resistor network 
 
 

► Control amplifier 
 

– Single fast op-amp wired 
as a PI-controller 
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 Turn-on 
 
 
 
 
 
 
 
  
 Clipping circuit 

di/dt Clipping Circuit 

 
► Exception / Issue 

 
– di/dt is not zero at turn-on after 

diode reverse recovery current peak 
– Influence on dv/dt control 

 
 

► Solution: clipping circuit 
 

– Sc closed during turn-on transients 
– Sc open at turn-off 

 
– Neg. di/dt values (pos. voltages of vEe) 

at turn-on are limited to volt. prop. to vDc 
– Pos. di/dt values are not affected 
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►
 



Closed-Loop Gate Drive – Block Diagram 
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► 

► 



Proposed Closed-Loop Gate Drive 
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► Basic Idea / Principle of Operation 
► Experimental Results 
► Stability Analysis 

[44-46] 
 



Closed-Loop Gate Drive - Hardware 

 
► PCB Dimensions:  5 cm x 13 cm 
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dv/dt-Feedback 

Output Stage 

di/dt-Feedback 

Control Circuits 



Experimental Results – Turn-On Transients 

 
► Variation of load current 

 
– di/dt = 2 kA/µs 
– dv/dt = -0.5 kV/µs 

 
 

► Outcome 
 

– Independent control of 
current and voltage slope! 
 

– Natural transition from 
di/dt to dv/dt control 

– Low overshoot in dv/dt 
after transition 

– No load current dependency 
at iC and vCE, but on vGe 
(higher vGe at higher current) 
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Experimental Results – Turn-Off Transients 

 
► Variation of load current 

 
– di/dt = -1 kA/µs 
– dv/dt = 2 kV/µs 

 
 

► Outcome 
 

– Independent control of 
current and voltage slope! 
 

– Natural transition from 
dv/dt to di/dt control 

– Low overshoot in di/dt 
after transition 

– No load current dependency 
at iC and vCE, but on vGe 
(higher vGe at higher current) 
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► Turn-On: Variation of di/dt 
 
 
 
 
 
 
 
 
 

► Turn-On: Variation of dv/dt 

► Turn-Off: Variation of di/dt 
 
 
 
 
 
 
 
 
 

► Turn-Off: Variation of dv/dt 

Experimental Results – Individual Variation of References 
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► Si: 1 kA/µs, -2 kV/µs 
 
 
 
 
 
 
 

 
 
► Si: 2 kA/µs, -1 kV/µs 

► SiC: 1 kA/µs, -2 kV/µs 
 
 
 
 
 
 
 
 
 

► SiC: 2 kA/µs, -1 kV/µs 

Experimental Results – Si vs. SiC Diode @ Turn-On 
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► RG: 2 kA/µs @ 400A 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
– No influence on dv/dt with RG (selected to achieve 2 kA/µs @ 400A) 
– Similar switching losses since di/dt and dv/dt are similar in both cases 

► Closed-Loop: 2 kA/µs, -1 kV/µs 

Experimental Results – RG vs. Closed-Loop @ Turn-On (1) 
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► RG: 1 kA/µs @ 400A 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
– No influence on dv/dt with RG (selected to achieve 1 kA/µs @ 400A) 
– ≈ 50 % of switching losses with closed-loop control compared to RG ! 

► Closed-Loop: 1 kA/µs, -2 kV/µs 

Experimental Results – RG vs. Closed-Loop @ Turn-On (2) 
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►   
 



► RG: -2 kA/µs @ 400A 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
– No influence on dv/dt with RG (selected to achieve -2 kA/µs @ 400A) 
– Similar switching losses since di/dt and dv/dt are similar in both cases 

► Closed-Loop: 1 kV/µs, -2 kV/µs 

Experimental Results – RG vs. Closed-Loop @ Turn-Off (1) 
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► RG: -1 kA/µs @ 400A 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
– No influence on dv/dt with RG (selected to achieve -1 kA/µs @ 400A) 
– ≈ 50 % of switching losses with closed-loop control compared to RG ! 

► Closed-Loop: 2 kV/µs, -1 kA/µs 

Experimental Results – RG vs. Closed-Loop @ Turn-Off (2) 
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►   
 



Considerations for Bridge Leg Configurations 

► Main goals 
 

– Minimal interlock delay time 
– No distortion of the output voltage 

(volt-seconds according to gate signal) 
 

 Transition depends on load current direction 
 Need for additional supperordinate control  

► Solution for conventional gate drives 
 

 Modifications of closed-loop di/dt and dv/dt  
gate drive are needed: [46] 
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[43] 
 



Short Circuit – Types and Detection  

► Hard Switching Failure 
 

– IGBT turns-on to an already existing  
short circuit at the load terminals 
 

– Detection by means of current iC measurement 
(active integration of voltage across  
bond wire inductance or Rogowski coil voltage) 
 iC > iC,max 

► Failure Under Load 
 

– IGBT is conducting current when the 
short circuit occurs at the load terminals 
 

– Detection by means of desaturation detection 
(vCE > vCE,max) with voltage limiting circuit 
 On-state:  vCE,clip = VCE + VD 
 Off-state: vCE,clip = v+ 
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Experimental Results – Hard Switching Failure 

► Turn-on into short circuit of opposite IGBT module (vGE,opp = 15 V) 
 

– Turn-on current slope actively controlled to di/dt = 1 kA/µs  
– Short circuit detected and turned-off with di/dt = -1 kA/µs 

 
 Defined turn-off di/dt 
 Constant turn-off overvoltage 
 SOA operation ensured 
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Proposed Closed-Loop Gate Drive 

40 

► Basic Idea / Principle of Operation 
► Experimental Results 
► Stability Analysis 

[44-46] 
 



Control-Oriented Modelling: Gate Drive 

► Transfer functions 
 

– Op-amp: lim. gain-bandwidth product 
 𝐺OP =

𝐴DC,OP

𝑠
𝐴DC,OP
2𝜋𝑓T,OP

+1
 

 
– PI-controller 
 𝐺𝑃𝐼 =

𝐺OP(𝑠𝑃+𝐼)

𝑠 𝐺OP+𝑃 +𝐼
 

 
– Output amplifier 
 𝐺AMP =

1

𝑠
1

2𝜋𝑓c,AMP
+1

 

 
– dvCE/dt measurement 
 𝐻𝑉,HP = 𝜏𝑉

𝑠

𝑠𝜏𝑉+1
 

 
– diC/dt measurement 
 𝐻𝐼,HP = 𝜏𝐼𝑠 
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Control-Oriented Modeling: IGBT (small-signal) 

 
 
 
 
 
 
 
 
 

 
► Key features 

 
– Considering parasitic inductances of the bond 

wires and the electrical terminals 
 

– Valid in the active region 
 iC:  voltage controlled current source 
 vCE: feedback via Miller-capacitance 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
► General limits 

 
– Valid at selected (i.e. worst case) operating point 
– Not considering dynamic device behavior 

(e.g. dependency on stored charge) 
 

► Needed transfer functions 
 

– vGe (input)  to  vCE (output) 
– vGe (input)  to  iC (output) 
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IGBT (small-signal) Transfer Functions 

 
► Voltage slope TF (assuming diC/dt = 0) 

 
► Current slope TF (assuming dvCE/dt = 0) 
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Block Diagrams and Closed-Loop Transfer Functions 

 
► Voltage slope 

 
 
 
 
 
 
 
 
 
 
 
 

► Control performance 
 

– Strong dependency on IGBT module (GV, GI) parasitics ! 
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► Current slope 



IGBT Modules – Internal Construction 

► Parasitic inductances  
 

– Present in power and gate wiring 
– Different for different modules (A, B, C); 1.2 kV, 400-450 A 
– Affect the stability / control performance of the closed-loop control 

 
 

► Power Terminals  
– LDC+/DC- = 20.9 … 27.8 nH 

 
 
 
 
 
 

 LDC+/DC- = 27.8 nH LDC+/DC- = 23.2 nH LDC+/DC- = 20.9 nH 
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(A) (B) (C) 



IGBT Modules – Internal Construction 

► Gate Wiring 
 

– LGe,LS/HS = 54.2 … 121.3 nH 
 
 
 
 
 
 
 
 

 
 LGe,LS = 104.6 nH LGe,LS = 94.8 nH LGe,HS = 121.3 nH 
 LGe,HS = 54.2 nH LGe,HS = 30 nH*  LGe,HS = 83.5 nH 
 
 
* Using a low-inductive coaxial connection to the foot ends of the gate driving terminals  

reduces the gate inductance by 26 nH, i.e. from 56 nH to 30 nH. 
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(A) (B) (C) 



 
 Bode diagram vCE step response dvCE/dt step response 

 
 
 
 
 
 
 

 
 
 High gate loop inductance is unfavorable 

 
– High P- and I values of the controller needed 
– Lower control bandwidth fc 

(limited gain-bandwidth product of op-amp) 
– Practical implementation: limited output  

voltage of op-amp and amplifier (+/- 15 V) 

Closed-Loop Transfer Functions – Voltage Slope 
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 Bode diagram iC step response diC/dt step response 

 
 
 
 
 
 
 

 
 
 Unsatisfying performance ! 

 
– Only one PI-controller (here adjusted for the voltage slope),  

but two different control loops 
– Solution 1: adjustment of controller for the more sensitive loop,  

i.e. the current loop in this case 
– Solution 2: adding gate- or Miller capacitance as low-pass filters to the corresponding control loop  

(gate: diC/dt; Miller: dvCE/dt) 

Closed-Loop Transfer Functions – Current Slope (1) 
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 Bode diagram iC step response diC/dt step response 

 
 
 
 
 
 
 

 
 
 Optimal performance for voltage and current control ! 

 
– Same P- and I-parameters as before,  

but with additional gate capacitance  
– Additional degree of freedom for  

individual control loop optimization 
– Disadvantages 

 Additional gate driving losses 
 Difficulty of inserting a capacitor close to the IGBT chip 

Closed-Loop Transfer Functions – Current Slope (2) 
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 IGBT (A) IGBT (B*) IGBT (C) 
 
 
 
 
 
 
 

 
 

 
 Similar switching performance for different IGBT modules 

 
 Lowest gate loop inductance –> Highest control bandwidth 

 
– Most accurately controlled voltage and current slopes 
– Most stable control performance 
– Here: no additional gate capacitance was used 

to optimize the current control loop 

IGBT Module Comparison at Closed-Loop Switching 
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Stability Analysis for Parameter Variations (1) 

► Sensitivity to the PI-controller gain 
 

– Increasing of P up to 4-times nominal value 
 
 
 
 
 
 
 
 

 
 Not critical 

 
– Pivotal poles are shifted towards the right s-half plane 
– P is properly adjusted initially 
– P is kept constant 
– Factor 4 is far away from tolerances 

51 



► Sensitivity to the Miller capacitance 
 

– Decreasing of CGC down to 0.25-times nominal value 
 
 
 
 
 
 
 
 

 
 Worst case assumption of CGC (for high values of vCE) 

 
– Pivotal poles are shifted towards the right s-half plane 
– System is still stable 
– Value of CGC can be extracted from datasheet, 

thus no stability issues are expected 

Stability Analysis for Parameter Variations (2) 
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Future Trends 

53 

► IGBT Protection 
► IGBT Monitoring / Online Measurement 



IGBT Protection 

► Overcurrent: iC at turn-on 
 

– Active integration of Rogowski coil voltage or 
voltage across main/aux. Emitter terminals 
 

► Desaturation: vCE,sat 
 

– Accurate measurement of vCE in on-state  
with clipping circuit 
 
 
 
 

► Health analysis for protection 
 
 
 

► Overtemperature: Tj 
 

– Estimation based on on-state characteristics 
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IGBT Monitoring / Online Measurement 

► Feedback to main controller: dout 
 

– Switched current iC 
– On-state voltage vCE,on 
– Estimated junction temperature Tj 
– Health state 

 
 
 
 

► Superordinate control by main controller 
 

– Converter control at max. output power,  
i.e. at max. junction temperature  
instead of max. rated power, with Tj feedback 
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Summary 
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Summary 

► Closed-loop di/dt and dv/dt gate drive 
– ensures a defined and safe switching behavior 
– enables a desired trade-off between switching losses and EMI 
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► Limit 
– Turn-off  

overvoltage 
– Turn-on reverse  

recovery current 
 

► Minimize 
– Switching losses 
– Delay times 

► Ensure 
– SOA operation 
– EMI specifications 

 

► Compensate 
– Junction temperature 
– Load current level 

 



Summary 

► Closed-loop di/dt and dv/dt gate drive 
– ensures a defined and safe switching behavior 
– enables a desired trade-off between switching losses and EMI 
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► Limit 
– Turn-off  

overvoltage 
– Turn-on reverse  

recovery current 
 

► Minimize 
– Switching losses 
– Delay times 

► Ensure 
– SOA operation 
– EMI specifications 

 

► Compensate 
– Junction temperature 
– Load current level 
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