

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Power Electronic Systems Laboratory

Multi-objective Optimization of Fully Integrated Voltage Regulators: Switched Capacitor and Inductor-Based Converters

Pedro A. M. Bezerra, Toke M. Andersen, Florian Krismer, Johann W. Kolar,

Arvind Sridhar, Thomas Brunschwiler, Thomas Toifl

Granular Microprocessor Power Delivery

Eidgenössische Technische Hochschule Zürich Power Electronic Systems Swiss Federal Institute of Technology Zurich

Laboratory

- How to Design an On-Chip Voltage Regulator that...
 - Achieves high efficiency?
 >85%
 - Achieves high power density?
 >1W/mm²
 - Achieves fast transient response?
 <1ns
 - Achieves high output power?
 >1W

Slide 3

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Laboratory

Outline

- State of the art on FIVRs
- Switched capacitor converters
 - Components' technologies
 - State space model framework
 - 2:1 SC converter design
 - Hardware results
- Inductor-based converters
 - Considered converter topology

Slide

- PMIC components' models
- **Optimization procedure**
- **Optimization results**
- Summary and conclusion

On-Chip Switched Capacitor Converters —

► 2:1 Switched capacitor topology

Slide 9

32nm SOI CMOS Semiconductor Technology -

- Deep Trench Capacitor
 - High capacitance density
 - Low bottom plate losses

- Thin-Oxide Transistors
 - Good R_{on} and Q_g FOM
 - 1.2V allowable blocking voltage

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Laboratory

Slide 10

SC Equivalent Model

- State Space Model Framework
 - Include parasitic bottom plate capacitance modeled by $R_{\rm bp}$
 - No approximation in R_{eq}

E

$$R_{\rm eq} = \frac{MV_{\rm in} - V_{\rm out}}{I_{\rm out}} = \frac{\frac{1}{2}V_{\rm in} - V_{\rm out}}{(2q_C - q_C{\rm bp})f_{\rm sw}} \qquad R_{\rm bp} = \frac{MV_{\rm in}}{\frac{1}{M}I_{\rm in} - I_{\rm out}} = \frac{\frac{1}{2}V_{\rm in}}{q_{C{\rm bp}}f_{\rm sw}},$$

Model Verification, $\alpha = \frac{C_{bp}}{C}$

 $300 \ 400$

300 400

2:1 SC Converter Design

- Specifications
 - $V_{\rm in} = 1.8 \, {\rm V}$
 - $V_{out} = 830 \,\mathrm{mV}$
 - $I_{out} = 20 \,\mathrm{mA}$
- Design Space
 - Transistor width
 - Capacitance
 - Switching frequency

ETH Eidgenössische Technische Hochschule Zürich Power Electronic Systems

Swiss Federal Institute of Technology Zurich Laboratory

פבק

SC Pareto Front Investigation I

SC Pareto Front Investigation II

First chip – 2:1 SC Converter

קבק

Laboratory

Eidgenössische Technische Hochschule Zürich Power Electronic Systems

Swiss Federal Institute of Technology Zurich

- ► A "learning vehicle"
 - 32 nm SOI CMOS
 - 86% efficiency
 - 4.6 W/mm² power density
 (= 4600 kW/liter for 1 mm height)
 - 100 MHz switching frequency

Second Chip: Overview

Reconfigurable SC Converter

Implementation in 32nm SOI CMOS

Measured Efficiency and Power Density -

Measured Transient Response

$V_{\rm in}$ collapse is causing the output voltage droop

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Laboratory

225

Andersen et al., ISSCC 2014

Third Chip: Overview

Implementation in 32nm SOI CMOS

New Transient Responses

Overhead reduction \rightarrow Significant system energy savings

Eidgenössische Technische Hochschule Zürich Power Electronic Systems Swiss Federal Institute of Technology Zurich

Andersen et al., ISSCC 2015

Efficiency over Output Power

How did we Do? -

- ► Achieve high efficiency? > $85\% \rightarrow 85\% - 88\%$
- ► Achieve high power density? > $1W/mm^2 \rightarrow Up \text{ to } 5W/mm^2$

Slide 26

- Achieve fast transient response?
 <1ns → <1ns with reduced overhead
- Achieve high output power > $1W \rightarrow Up \text{ to } 10W$

Eidgenössische Technische Hochschule Zürich Power Electronic Systems Swiss Federal Institute of Technology Zurich Laboratory

On-Chip Inductor-Based Converters

Slide 27

Conventional buck converter

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Laboratory

CarrICool Project (FP7-ICT-619488)

Slide 28

- Modular interposer architecture providing scalable heat removal, power delivery and communication
- ► WP3: Power delivery
 - Active die:
 - Power switches assembled in submicron technologies (32 nm)
 - Passive silicon interposer:
 - 3D TSV inductors (toroidal and helical structures)
 - High density deep-trench capacitors

השק

Laboratory

Eidgenössische Technische Hochschule Zürich Power Electronic Systems

Swiss Federal Institute of Technology Zurich

Acknowledgements:

Considered Converter

- 2.5D integration
 - Passives in a silicon interposer
- Stacked transistors
 - Support the relatively high input voltage
- Four-phase buck converter • For current ripple reduction

קבק

Laboratory

Eidgenössische Technische Hochschule Zürich Power Electronic Systems

Swiss Federal Institute of Technology Zurich

Specifications:

- $V_{\rm in}$ = 1.7 V
- $V_{\rm out}$ = 850 mV
 - = 1.18 A *I*_{out} = 1 W
- Pout
- $\Delta V_{\rm out,max}$
 - **Phases**
- $= 0.5\% \cdot V_{out}$ = 4
- Slide 29

Components' Models: PMIC

Power Switches

Models extracted from cadence simulations for 32 nm CMOS SOI power switches

- Transistor's on-state resistance
- NMOS and PMOS gate charges
- NMOS body diode reverse recovery charge
- PMOS turn-on energy losses

Components' Models: Interposer

- Racetrack Inductors with Core Material
 - Thin-film with magnetic material: Ni₄₅Fe₅₅

 \circ Dc and ac copper losses

- $ho~[{
 m W/mm^2}]$
- $\circ\,$ Eddy current and hysteresis core losses
- Output Capacitor
 - ESR vs. capacitance extracted from experimental data provided by IPDiA.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Andersen et al., IEEE Trans. on Power Electronics, 2013

Optimization Procedure

Design Space

Symbol	Description	Value
PAR	Peak to average ratio	1.1, 1.5, 2
N	Number of turns	1 8
t _w	Winding width	10 1400 µm
t _t	Winding thickness	10 50 µm
t _s	Winding spacing	10 50 µm
Ct	Core thickness	112 µm
Cl	Core length	1 10 mm
$T_{ m wp}$	PMOS transistor width	4 20 mm
$T_{ m wn}$	NMOS transistor width	4 20 mm

- Capacitor optimized for minimum area possible and still provide $\Delta V_{out} < \Delta V_{out,max}$
- Designs featuring *B* > *B*_{sat} and PMIC loss density > 10W/mm² are excluded from the results

Optimization Procedure: Results

Summary and Conclusion

Switched Capacitor Converters

- Deep trench capacitors available in the 32 nm SOI CMOS or in silicon interposers are a game changer with respect to SC converters efficiency and power density.
- The developed state-space model framework, including the bottom plate capacitor, is suitable for a Pareto optimization analysis.
- Reconfigurable SC converter power stages efficiently widen the supported output voltage range for a fixed input supply.
- The 10W implemented SC converter demonstrates the feasibility of the SC topology for high-power applications.
- **Experimental Achievements:**
 - Efficiency: 85% 88% 0
 - Chip Power Density: up to 5W/mm2 0
 - Output power: up to 10W Ο
 - Fast transient response: 1ns with reduced overhead Ο
- **Inductor-Based Converters**
 - For the considered topology, specifications, and components $\eta > 90\%$ and $\alpha > 1$ W/mm² are achievable, but not simultaneously.
 - Future analysis will investigate the converter optimization also with air-core inductors and with new TSV inductors.
 - Switching losses models will be improved to consider the ZVS switching event of the half-bridge (PMOS+NMOS).

Slide 34

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Power Electronic Systems** Laboratory

Thank you for your attention! Updated Slides on

http://www.pes.ee.ethz.ch

