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► Motivation

Next generation residential energy management systems

 Renewable energy sources, local storage systems and intelligent load 
management

 DC distribution bus and single connection point to AC utility grid

 Possible element of a future smart grid system
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► Challenges

Requirements for DC/DC converters

 High functionality
• Bidirectional power flow
• Galvanic isolation
• Wide voltage range

 High conversion efficiency at low 
volume and costs
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► Bidirectional Isolated DC/DC Converter with Wide Input 
Voltage Range 

Universal DC/DC converter

 Meets all requirements at once
• Bidirectional power flow
• Galvanic isolation
• Wide voltage range
• High efficiency & power density

 Universal building block at low costs
• Reduced system complexity
• Development costs only once
• Economies of scale

Converter specifications

 Rated power Pr 5 kW

 Input voltage range [UDC1,min, UDC1,max] [100,700] V

 Output voltage UDC2 750 V

 Maximum input current IDC1,max 22 A

 Maximum efficiency ηmax > 98 %
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► Design Steps
i. Selection of semiconductors & topology

ii. Selection of modulation scheme

iii. Multi-objective modeling and optimization

iv. Experimental verification
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► Selection of Semiconductor Type

Si IGBT

 Cheap
 1200 V rated available

 Conduction losses not 
scalable

 No ZVS possible                    
► Only ZCS
► Topological restrictions

Si super junction MOSFET

 Conduction losses scalable
 ZVS possible

 Non-zero ZVS losses (due SJ)
 Large specific Coss
 Only 650 V rated available

► NPC half-bridge necessary 
► Increased part count

SiC vertical D-MOSFET

 Conduction losses 
scalable

 Very low ZVS losses
 1200 V rated available
 Low specific Coss

 Costs
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► Selection of Topology: Two-Stage Converter

Two-stage approach

 Boost converter to adapt the 
voltage

 Resonant converter for 
galvanic isolation

 ZVS possible in both stages

Pros/cons

 Optimized/tailored converter 
topology for each task

 Simple control

 High part count
► Reliability
► Costs

 High efficiency questionable 
as many components in series

Variable frequency TCM boost converter Series-resonant LLC converter
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► Selection of Topology: Single-Stage DAB Converter

Single-stage approach

 Integrated voltage adaption 
and galvanic isolation

 ZVS possible

Pros/cons

 Low part count

 Operation at fixed frequency

 Optimization more 
challenging

 Advanced modulation scheme 
necessary
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► Modulation Scheme (I)

Objectives

 Choose control parameters (D1, D2, ϕ) so as to minimize RMS currents
• Minimizes the conduction losses
• Assumption of low switching losses (ZVS)

 Optimization problem must be solved for all operating points (UDC1, UDC2, Pout)

 Closed form solutions in:

F. Krismer and J.W. Kolar,“Closed Form Solution for Minimum Conduction Loss Modulation 
of DAB Converters”, IEEE Transactions on Power Electronics, Vol. 27, No. 1, January 2012

D1

D2

ϕ

uFB1 uFB2

iFB1
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► Modulation Scheme (II)

(1) Triangular Current Mode
(TCM)

uFB1
uFB2

iFB1(1)

(2) Optimal Transition Mode  
(OTM)

uFB1
uFB2

iFB1

D1=0.5

(2)

(3) Conventional Phase-Shift
Modulation (CPM)

uFB1 uFB2

iFB1 D1=D2=0.5

(3)
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► Multi-Physics Modeling and Optimization Framework

Heat sink and semiconductors

 Experimentally verified heat sink models

 Conduction loss model based on data sheet information

 Switching loss model based on switching loss measurements

Magnetics

 Core losses based on iGSE and core loss measurements

 HF winding losses based on mirroring method

 Advanced reluctance and thermal models

Capacitors

 Data sheet information
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► Optimization Results

Prototype

fsw = 48kHz
ηavg = 98.2%
Vcomp = 1.8 dm3

Loss of ZVS!
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► Experimental Verification: Hardware Prototype

233 mm

86 mm

139 mm
Vbox = 2.78 dm3 (vs. Vcomp = 1.8 dm3)

Semiconductors

 CREE SiC MOSFET C2M0080120D 
1200 V   80 mΩ

 2 x par. on variable volt. side
 1 x par. on fixed volt. side

Magnetics

 FerroxCube 3C91
 Litz wire 71 µm
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► Experimental Verification: Efficiency

Exceptional performance despite high functionality
 Peak efficiencies of 98.8% (without auxiliary) and 98.5% (incl. 10 W auxiliary power)
 High efficiency over extremely wide parameter range (ηavg = 98.2%)
 ZVS in most operating points 



15/17

► Experimental Verification: Power Density

Definition of power density 
 Power density only meaningful in combination with specification of 

[UDC1,min,UDC1,max] / [UDC2,min,UDC2,max] / ηavg / costs

 DAB specifically designed for narrow input voltage range: ρ estimated > 5 – 10 kW/dm3

ρmax = 3.4 kW/dm3

ρr = 1.8 kW/dm3 ρ[100,700]V = 1.2 kW/dm3 
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► Summary & Conclusion

Bidirectional isolated DC/DC converter with wide input voltage range 

 High functionality for universal application in residential energy 
management systems

 Experimentally verified performance 

(ηavg = 98.2% / ρr = 1.8 kW/dm3 / UDC1 = [220,700] V )

 Possible cost savings due to lower system complexity, 
development costs and due to economies of scale

 Performance not achievable without optimized modulation 
scheme and SiC
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► Thank you for your attention!

Updated slides on:    http://www.pes.ee.ethz.ch
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