

Case Study

Bidirectional Isolated DC/DC Converter with Wide Input Voltage Range for Residential Energy Management Applications

Ralph M. Burkart and J. W. Kolar Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Motivation

Next generation residential energy management systems

- Renewable energy sources, local storage systems and intelligent load management
- **DC** distribution bus and single connection point to AC utility grid
- Possible element of a future smart grid system

ETH zürich

Challenges

Requirements for DC/DC converters

- High functionality
 - Bidirectional power flow
 - Galvanic isolation
 - Wide voltage range
- High conversion efficiency at low volume and costs

Bidirectional Isolated DC/DC Converter with Wide Input Voltage Range

Universal DC/DC converter

- Meets all requirements at once
 - Bidirectional power flow
 - Galvanic isolation
 - Wide voltage range
 - High efficiency & power density
- Universal building block at low costs
 - Reduced system complexity
 - Development costs only once
 - Economies of scale

- Rated power
- Input voltage range
- Output voltage

ETH zürich

- Maximum input current
- Maximum efficiency

Design Steps

- i. Selection of semiconductors & topology
- ii. Selection of modulation scheme
- iii. Multi-objective modeling and optimization
- iv. Experimental verification

Selection of Semiconductor Type

Si IGBT

Cheap

ETH zürich

- 1200 V rated available
- Conduction losses not scalable
- No ZVS possible
 - Only ZCS
 - ► Topological restrictions

Si super junction MOSFET

- Conduction losses scalable
- ZVS possible
- Non-zero ZVS losses (due SJ)
- Large specific *C*_{oss}
- Only 650 V rated available
 - NPC half-bridge necessary
 - Increased part count

SiC vertical D-MOSFET

- Conduction losses scalable
- Very low ZVS losses
- 1200 V rated available
- Low specific *C*_{oss}
- Costs

Selection of Topology: Two-Stage Converter

Variable frequency TCM boost converter

Series-resonant *LLC* converter

7/17

Two-stage approach

- Boost converter to adapt the voltage
- Resonant converter for galvanic isolation
- ZVS possible in both stages

Pros/cons

- Optimized/tailored converter topology for each task
- Simple control
- High part count
 - Reliability
 - Costs
- High efficiency questionable as many components in series

ETH zürich

Selection of Topology: Single-Stage DAB Converter

Modulation Scheme (I)

Objectives

- Choose control parameters (D_1, D_2, φ) so as to minimize RMS currents
 - Minimizes the conduction losses
 - Assumption of low switching losses (ZVS)
- Optimization problem must be solved for all operating points (U_{DC1}, U_{DC2}, P_{out})
- Closed form solutions in:

F. Krismer and J.W. Kolar, *"Closed Form Solution for Minimum Conduction Loss Modulation of DAB Converters"*, IEEE Transactions on Power Electronics, Vol. 27, No. 1, January 2012

ETH zürich

Modulation Scheme (II)

(1) Triangular Current Mode (TCM)

(3) Conventional Phase-Shift Modulation (CPM)

Multi-Physics Modeling and Optimization Framework

Heat sink and semiconductors

- Experimentally verified heat sink models
- Conduction loss model based on data sheet information

$$P_{\text{cond,MOSFET}} = \frac{1}{T} \int_0^T R_{\text{DS,on}}(i_{\text{DS}}(t), T_{\text{j}}) i_{\text{DS}}^2(t) dt$$

Switching loss model based on switching loss measurements

$$P_{\rm sw,on/off} = f_{\rm sw} E_{\rm on/off} (I_{\rm sw,on/off}, U_{\rm sw}, T_{\rm j})$$

Magnetics

- Core losses based on iGSE and core loss measurements
- HF winding losses based on mirroring method
- Advanced reluctance and thermal models

Capacitors

ETH zürich

Data sheet information

Optimization Results

Experimental Verification: Hardware Prototype

Semiconductors

Magnetics

tics

Power Electronic Systems Laboratory

Experimental Verification: Efficiency

Exceptional performance despite high functionality

- Peak efficiencies of 98.8% (without auxiliary) and 98.5% (incl. 10 W auxiliary power)
- High efficiency over extremely wide parameter range (η_{avg} = 98.2%)
- ZVS in most operating points

Experimental Verification: Power Density

Definition of power density

Power density only meaningful in combination with specification of

 $[U_{\rm DC1,min}, U_{\rm DC1,max}] \ / \ [U_{\rm DC2,min}, U_{\rm DC2,max}] \ / \ \eta_{\rm avg} \ / \ {\rm costs}$

• DAB specifically designed for narrow input voltage range: $\rho_{\text{estimated}} > 5 - 10 \text{ kW/dm}^3$

ETH zürich

Summary & Conclusion

Bidirectional isolated DC/DC converter with wide input voltage range

- High functionality for universal application in residential energy management systems
- **Experimentally verified performance**

 $(\eta_{\text{avg}} = 98.2\% / \rho_{\text{r}} = 1.8 \text{ kW/dm}^3 / U_{\text{DC1}} = [220,700] \text{ V})$

- Possible cost savings due to lower system complexity, development costs and due to economies of scale
- Performance not achievable without optimized modulation scheme and SiC

► Thank you for your attention!

Updated slides on: http://www.pes.ee.ethz.ch

