

Towards the Integration of Voltage Regulators in Server Applications

PwrSoC, October 19th, 2018

<u>Pedro A. M. Bezerra¹</u>, Florian Krismer¹, Johan W. Kolar¹, Arvind Sridhar², Thomas Brunschwiler², Thomas Toifl² ¹ Power Electronic Systems Laboratory (PES), ETH Zurich, Switzerland ² IBM Research, Ruschlikon, Switzerland

The complete version of the slides are available at the PES-ETH website: https://www.pes-publications.ee.ethz.ch/publications/conferences/

Outline

- Target application
- Motivation to use IVRs
- **System specifications and target achievements**
- ► Components' model
- ► Optimization procedure
- Preliminary experimental results
- Conclusion and outlook

2/23

ETH zürich

Point of Load Conversion for Server Applications

3/23

Why going for IVRs in Modern Microprocessor Applications?

Microprocessor's Package Allow for considerably **Microprocessor Chip** Demand **Overhead** energy savings FIVR1 Supply voltage 0.6-1.1 V VD1 **Dynamic Voltage and** ~250 A Frequency Scaling (DVFS) Reduced number of FIVR2 VD1 VD2 VD2 VD3 VD3 VD1 VD2 1.1 V interconnects to the Workload 1 Workload 2 ~50 A microprocessor package Size reduction VRM FIVR3 L2 V 1.7 V 0.6-0.8 V VD3 Reliability improvement ~210 A Parasitics of ~30 A Interconnections **Off-Chip VRM** Allow the use of modern on the motherboard FIVR3 **CMOS Technologies for** VD4 0.8-1 V ~50 A power switches Faster response to load FIVR4 and reference voltage VD5 1.5 V ~5 A transients

CarrICool Project (FP7-ICT-619488)

Multi-functional interposer platform that provides scalable cooling, granular chip-level power delivery and optical signaling required for scale-up systems

Considered System Specifications and Target Achievements

Specifications

$$V_{in} = 1.6 V$$

$$V_{out,nom} = 0.8 V$$

$$I_{out} = 1 A$$

$$P_{out} = 0.8 W$$

$$\Delta V_{out,max} = 1\% \cdot V_{out}$$

- Specifications taken from the most power consuming voltage domain
- Power is scaled down

- Overall efficiency $\eta > 90\%$
- Overall power density $\rho > 1 \text{ W/mm}^2$
- Chip power density ρ > 20 W/mm²
 - Only 1% of the microprocessor area is allowed for power management

Beyond the state of the art!

IVR Design and Optimization

Integration Level and Considered Topology

2.5D integration level

Four-phase interleaved buck

Main waveforms

approaches

transistors

ETH zürich IE

Take advantage of high

FOM deep sub-micron

- Better quality factor integrated passives compared to 2D and 3D better heat and loss distribution among the components
 - Allow for phase shedding at low load operation
 - Stacked configuration supports the relatively high input voltage

[A] 1**.**25 $I_{\rm out,pk}$ 1.20 $I_{ m out,val}$ 1.15 $\Delta I_{out,pp}$ [A] $I_{L,pk}$ 0.4 I_{L3} I_{L1} 0.3 0.2 $I_{L,val}$ [A] D₁ 0.4 L1,exp 0.3 $\Delta I_{L1,pp}$ 0.2 T_/2 T, 0

 Output and input current ripple reductions

8/23 -

Racetrack Inductors with Core Material

Dimensions description

ipdia //23 —

Deep-Trench Capacitors

- Capacitance density up to 250 nF/mm² with high capacitance stability vs. temperature
- ESR vs. capacitance extracted from experimental data

Lallemand et al., EMPC, 2013

Power Transistor Model for Stacked Configuration

Cadence transient simulations demand high computational efforts

- **Based on measurements results**
- ► Too long simulation time

Necessity of accurate and simplified loss modeling for optimization

- Semiconductor losses dependent on the transistors channel width (T_{wP}, T_{wN} channel length fixed by design rules), dead times (t_{d.1}, t_{d.2}), and chip temperature
- Low computational effort

Cadence based simplified transistors model!

- Represents the most significant source of losses
- Uses a discrete number of cadence simulations and a multivariable interpolation algorithm

Power Electronic Systems Laboratory

0 o-

ETH zürich

Considered Power Stages

Gate drivers: 2 Power devices: 4 Level Shifters: 1 Independent gate signals: 2

 $v_{\rm ds,TN_2}$ Time $v_{G,L}$ 00 Gate drivers: 2 Power devices: 6 Level Shifters: 1

Independent gate signals: 2

Proposed CMOS ANPC

Problem of unequal voltage distribution during the switching transients and steady-state.

Clamping switches are added to assure voltage balance among the transistors

Bezerra et al., COMPEL, 2017

Considered Power Stages

► Conventional CMOS HB

CMOS ANPC

Proposed CMOS ANPC

Unlike the conventional CMOS ANPC, the proposed bridge maintains the clamping switches off during the entire dead-time period assuring soft-switching

Considered Power Stages

- Due to the voltage balance and less losses during the hard switching event up to 1% efficiency can be saved using the proposed bridge at 150 MHz
- The efficiency improvements of using the proposed CMOS ANPC increase with frequency compared to the conventional approach

Pre-optimization Loop of the Power Switches

ETH zürich

Optimization Procedure

Considered design space

► Inductor

Sym.	Description	Range	Step	Unit
N	Number of turns	1 5	1	
t _w	Winding width	10 1400	10 or 500	μm
t _t	Winding thickness	10 50	20	μm
t _s	Winding spacing	10 50	20	μm
c _t	Core thickness	1 10	3	μm
<i>с</i> і	Core length	1 10	3	mm

Power Switches

Sym.	Description	Range	Step	Unit
T _{wP}	P channel width	5 15	5	mm
$T_{\rm wP}$	N channel width	5 15	5	mm
<i>t</i> _{d,1}	Dead-time 1	20 120	50	ps
t _{d,2}	Dead-time 2	10 50	50	ps

Capacitor

Sym.	Description	Range	Step	Unit
$\mathbf{C}_{\mathrm{out}}$	Output capacitance	0.1 500	10.2	nF

Only one transistor size was used for the 14 nm IVR

Performance Comparison Between IVRs

- 90% efficiency achievable with 0.2 W/mm² more power density using the proposed ANPC HB and 14 nm technology
 - Switches and power stage are more efficient for high frequency operation
- Selected inductance and switching frequency at 90% efficiency:
 - ► 32 nm Conventional HB:
 - 51 nH @70 MHz
 - ► 14 nm Proposed ANPC HB:
 - 16 nH @160 MHz

Implementation: PMIC

PMIC in 14 nm CMOS process

Four-phase interleaved ANPC buck

- Versatile open loop converter for better PMIC characterization
- Compatible with single and coupled inductors

18/23 -

Implementation: Active Power Stage

Schematics

Finfet concept

- Globalfoundrie's 14 nm Bulk CMOS
- **Finfet 3D transistors optimized for digital circuits**
- Design uses exclusively low voltage devices

Implementation: Inductors

Coupled inductors with magnetic core

Strip-line

Racetrack

► 100 MHz design ► 150 MHz design = 21.6 nH = 14.4 nHL_{Self2} L_{Self2} \mathbf{k}_2 = - 0.95 (k_{max}) $= -0.95 (k_{max})$ \mathbf{k}_2 = 2.4 nH $\mathsf{L}_{\mathsf{Self1}}$ = 1.6 nH L_{Self1} = 0.95 (k_{max}) \mathbf{k}_1 $= 0.95 (k_{max})$ \mathbf{k}_1

Cross section view

Implementation: All-silicon-based Demonstrators

21/23

PCB-based demonstrators and Experimental Results

Demonstrator

Wire-bonded PMIC

► Passive devices

Switching node

Efficiency estimation

Conclusions

- Extraction of the switches' loss models could be transposed for different Technologies
- Migration from 32nm SOI to 14 nm Bulk allows for high efficient and dense designs
- Interposer-based 2.5D integration allows the use of different components' process
- Better understanding of the switches' switching behavior allows for improvement in efficiency and reliability of the power stage

Outlook

- **Fully Characterization of the designed demonstrators**
 - **L**osses characterization of the individual devices and full systems
 - Requires accurate temperature measurements
 - Voltage probes embedded to the chip
- Testing of the designed closed-loop IVRs

Thank you for your attention!

