
Research Vectors in Power Electronics and Motion Control

Arda Tüysüz, Johann W. Kolar

Power Electronic Systems Laboratory ETH Zurich, Switzerland

Agenda

ETH Zurich

Dept. of Information Tech. and Electrical Eng. Power Electronic Systems Lab.

► ETH Zurich

■ Founded 1855

• Driving Force of Industrialization in Switzerland

■ ETH Zurich Today

- One of the Leading International Universities for technology and the Natural Sciences
- Place of Study, Research and Employment for Approximately 29,000 People from over 110 Different Countries

■ ETH Research and Education

- Excellent Education
- Ground-Breaking Fundamental Research
- Putting New Findings into Practice

► ETH Zurich

■ Two Main Locations in Zurich

- Historic Main Building in the Heart of Zurich, Built by Gottfried Semper
- Modern Campus on the Outskirts of the City, in Hönggerberg, which Links Science, the Business World and the General Public

Additional Locations in Switzerland

- Basel: Department of Biosystems Science and Engineering (D-BSSE)
- Lugano: Swiss National Supercomputing Center (CSCS)
- Other Decentralized Entities

■ Research Facility in Singapore

 Singapore ETH Centre for Global Environmental Sustainability (SEC)

ETH Zurich, Zentrum

ETH Zurich, Hönggerberg

21 Nobel Prizes 413 Professors 6240 T&R Staff

2 Campuses 136 Labs

35% Int. Students 110 Nationalities

150th Anniv. in 2005

Departments of ETH Zurich

ARCH Architecture

BAUG Civil, Environmental and Geomatics Eng.

BIOL Biology Biosystems

CHAB Chemistry and Applied Biosciences

ERDW Earth Sciences

GESS Humanities, Social and Political Sciences

HEST Health Sciences, Technology

INFK Computer Science

ITET Information Technology and Electrical Eng.

MATH Mathematics
MATL Materials Science

MAVT Mechanical and Process Engineering
MTEC Management, Technology and Economy

PHYS Physics

USYS Environmental Systems Sciences

► Research @ D-ITET

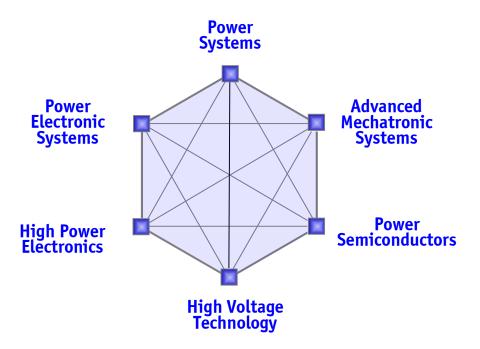
■ Four Core Research Areas

- Energy
- Electronics and Photonics
- Information and Communication
- Biomedical Engineering

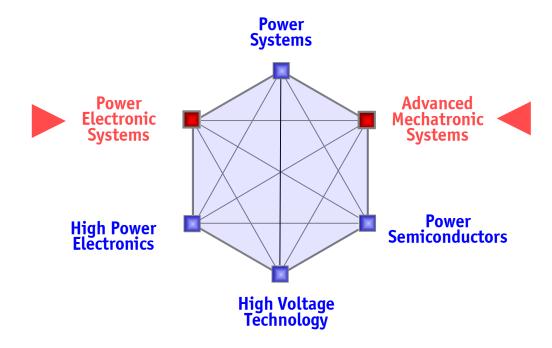
■ Students & Staff

650 B.Sc. Students

300 M.Sc. Students

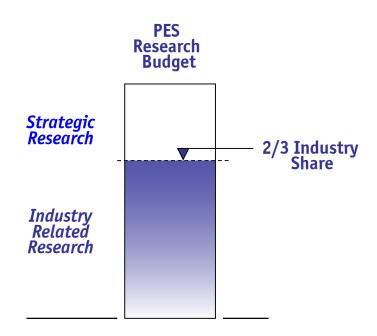

400 Ph.D. Students

27 Professors

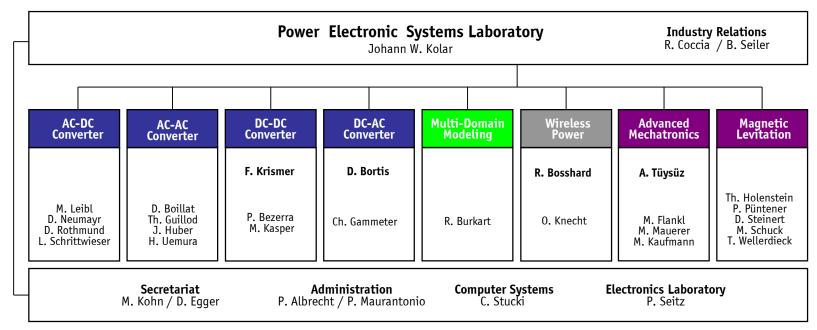

Energy Research Cluster @ D-ITET

► Balance of Fundamental and Application Oriented Research

Energy Research Cluster @ D-ITET



► Balance of Fundamental and Application Oriented Research

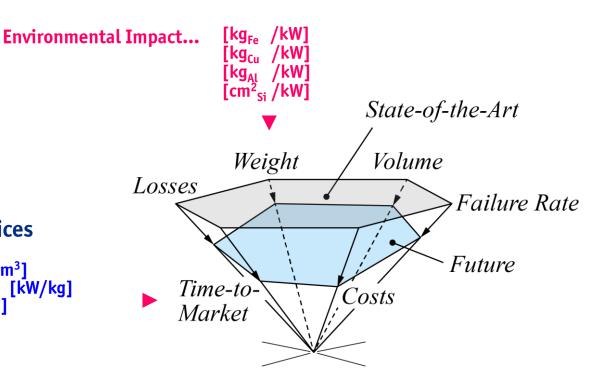

PES Industry Collaboration

- Core Application Areas
 - Renewable Energy
 - UPS
 - Smart Grid
 - Automotive Systems
 - More-Electric Aircraft
 - Medical Systems
 - Industry Automation
 - Semiconductor Process Technology
 - Etc.
- ► 16 International Industry Partners

Power Electronic Systems Laboratory (PES)

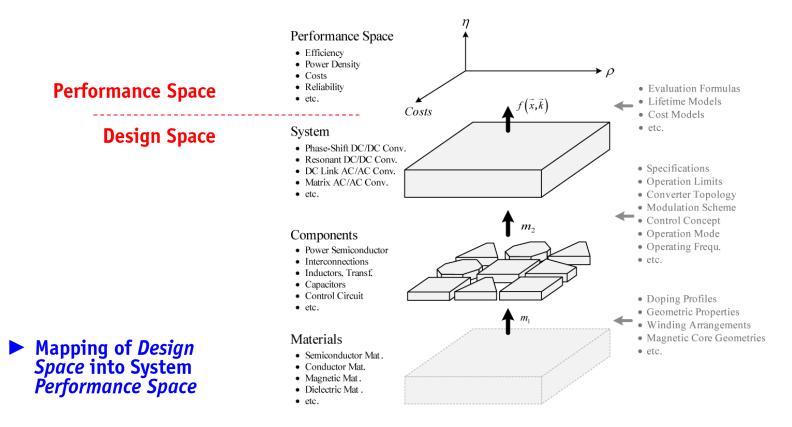
22 Ph.D. Students 4 Post Docs

4 Post Docs → 1:5 PostDoc/Doc - Ratio


Leading Univ. in Europe

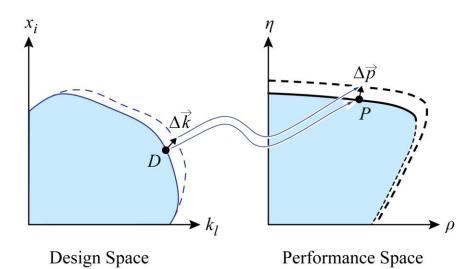
General Research Approach

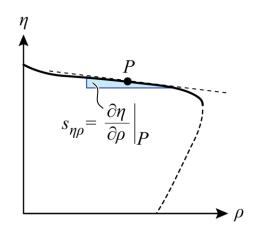
Power Electronics Converters Performance Trends

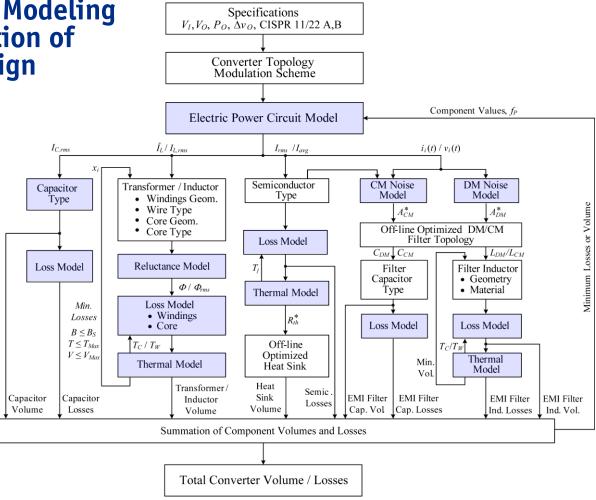


■ Performance Indices

- Power Density [kW/dm³]
 Power per Unit Weight [kW/kg]
 Relative Costs [kW/\$]
- Relative Losses [%]
- Failure Rate


Abstraction of Power Converter Design

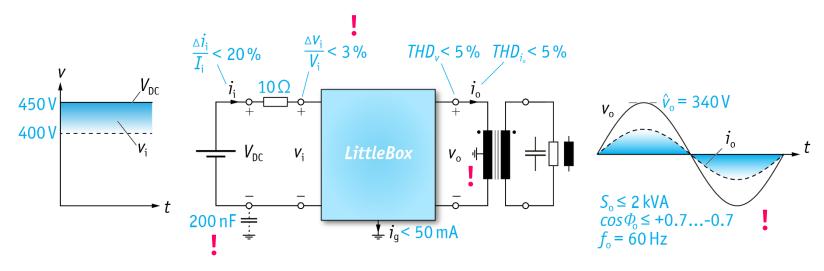



Technology Sensitivity Analysis Based on η - ρ -Pareto Front

- Sensitivity to Technology AdvancementsTrade-off Analysis

Mathematical Modeling and Optimization of Converter Design

The Google Little Box Challenge


Requirements
Grand Prize
System

- ullet Design / Build the 2kW 1- Φ Solar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

■ Push the Forefront of New Technologies in R&D of High Power Density Inverters

- Design / Build the 2kW 1-⊕ Solar Inverter with the Highest Power Density in the World
 Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C EMI FCC Part 15 B

■ Push the Forefront of New Technologies in R&D of High Power Density Inverters

The Grand Prize

- Highest Power Density (> 50W/in³)
 Highest Level of Innovation

- **■** Timeline
- Challenge Announced in Summer 2014
- 650 Teams Worldwide
- 100+ Teams Submitted a Technical Description until July 22, 2015
- 15 Finalists / Presentation @ NREL on Oct. 21, 2015, Golden, Colorado, USA
 Testing @ NREL, Colorado, USA / Winner will be Announced in Early 2016

■ Compliant to All Specifications (!)

14.8in³ (243 cm³) 96,3% Efficiency @ 2kW 95.07% Weighted Efficiency $T_c = 58^{\circ} \text{C} @ 2 \text{kW}$

 $\Delta u_{\rm DC}$ = 1.1% $\triangle i_{DC}^{E} = 2.8\%$ THD+N_U = 2.6% $THD + N_{T} = 1.9\%$

88.7mm x 88.4mm x 31mm

Source: Kolar et. al., Little Box Challenge, CIPS 2016

New Technologies

- Cascaded Control for Active Power Pulsation Buffer
- TCM Modulation → Active ZVS in Whole Operating Range

- 4D Interleaving of 2 Bridge Legs per Phase
 20ns Delay / 500kV/us Gate Drive for 600V IFX Norm.-Off GaN GIT
 Q=800 / Multi-Micro-Airgap HF Inductor w. Multi-Layer Foil Winding
 CSPI=34W/(dm³K) Heatsink also Employed as EMI Shield

■ Compliant to All Specifications (!)

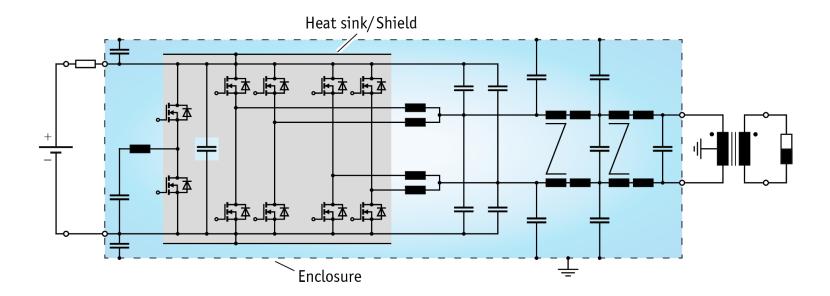
14.8in³ (243 cm³) 96,3% Efficiency @ 2kW 95.07% Weighted Efficiency $T_c = 58^{\circ} \text{C} @ 2 \text{kW}$

 $\Delta u_{\rm DC}$ = 1.1% $\Delta i_{\rm DC}^{\rm BC} = 2.8\%$ THD+N_U = 2.6% $THD + N_{\tau} = 1.9\%$

88.7mm x 88.4mm x 31mm

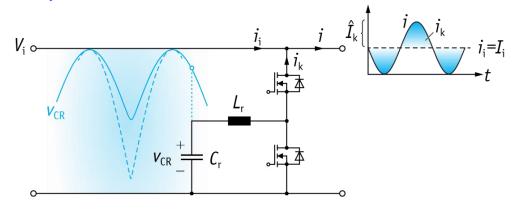
New Technologies

- Cascaded Control for Active Power Pulsation Buffer
- TCM Modulation → Active ZVS in Whole Operating Range


- 4D Interleaving of 2 Bridge Legs per Phase
 20ns Delay / 500kV/us Gate Drive for 600V IFX Norm.-Off GaN GIT
 Q=800 / Multi-Micro-Airgap HF Inductor w. Multi-Layer Foil Winding
 CSPI=34W/(dm³K) Heatsink also Employed as EMI Shield

Selected Converter Topology

- Interleaving of 2 Bridge Legs per Phase Volume / Filtering / Efficiency Optimum
- Active 1-⊕ Output Power Pulsation Buffer


- ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range 4D TCM Interleaving Heatsinks Connected to DC bus / Shield to Prevent Capacitive Coupling to Grounded Enclosure

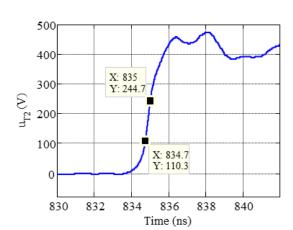
Power Pulsation Buffer

- Employs Large Voltage Fluctuation Capacitor & DC/DC Buck Converter Stage High Energy Density Ceramic Capacitors (CeraLink)
- **New Multi-Loop Cascaded Control Structure**

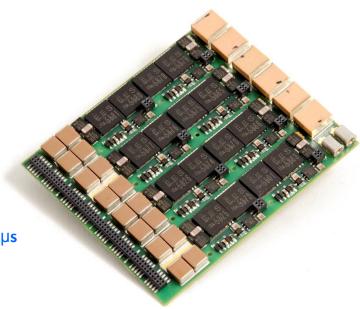
5 x 493µF/450 V C = 2.46 mF

 $V = 166 \, \text{cm}^3$

■ Significantly Lower Volume Compared to Electrolytic Capacitors


Power Semiconductors

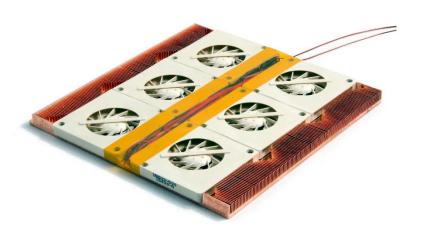
- 600V IFX Normally-Off GaN GIT ThinPAK8x82 Parallel Transistors / Switch

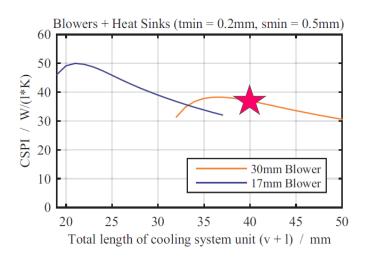


- 1.2V typ. Gate Threshold Voltage - 55 m Ω $R_{\rm DS,qn}$ @ 25°C, 120m Ω @ 150°C - 5 Ω Internal Gate Resistance

 $dv/dt = 500kV/\mu s$

■ CeraLink Capacitors for DC Voltage Buffering

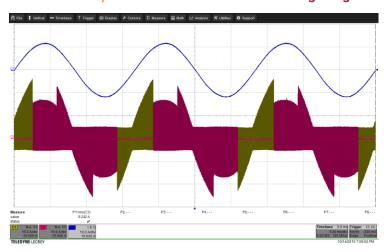




Thermal Management

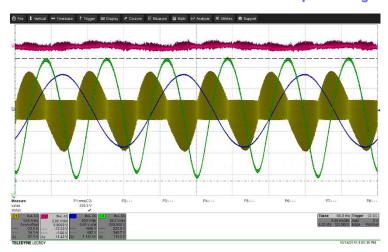
- 30mm Blowers with Axial Air Intake / Radial Outlet Full Optimization of the Heatsink Parameters
- **Outstanding Cooling Syst. Performance Index**
- 200um Fin Thickness

- 500um Fin Spacing
 3mm Fin Height
 10mm Fin Length
 CSPI = 37 W/(dm³.K)
 1.5mm Baseplate



System Complies to All Specifications (!)

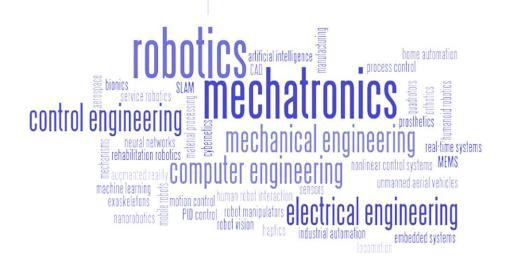
Output Current
Inductor Current Bridge Leg 1-1
Inductor Current Bridge Leg 1-2



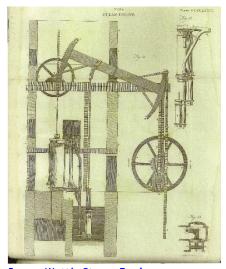
DC Link Voltage (AC-Coupl.)

Buffer Cap. Voltage

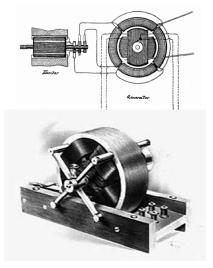
Buffer Cap. Current


Output Voltage

■ New 4D Interleaving Combined with Active ZVS TCM Modulation



Today's and Future Motion Control Systems



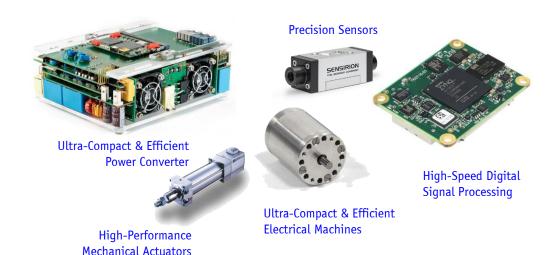
▶ Development of Motion Control Systems

James Watt's Steam Engine

Nikola Tesla's AC induction machine

Integrated drive system (AC motor + SkiN IGBT power electronics) for today's electric vehicles

■ Exponential Development

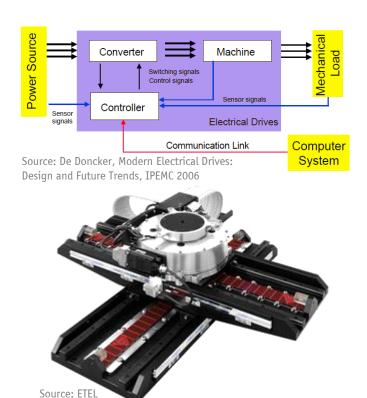

- < 1900 Mechanical
 - 1900 Mechanical + Electrical
 - 1950 Mechanical + Electrical + Electronic → Electronic Motion Control
 - 1975 Mechanical + Electrical + Electronic + Computation → MECHATRONICS
 - 1985 Mechanical + Electrical + Electronic + Computation + Information/Communication

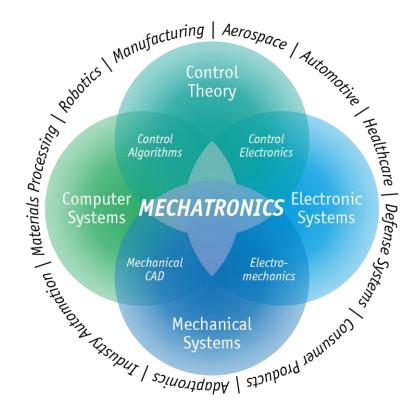
► Future Innovation in Motion Control Systems

■ Key Components are Today Available with High Performance

■ Extremely Wide Application Areas

- Machining
- · Handling and Assembly
- Transportation (land, sea, air)
- Gas, Oil and Mining
- Water, Wastewater
- Consumer Electronics
- Computers
- Home Appliances
- Defense
- Medical
- Space Exploration


► 1st Option for Gaining Competitive Advantage: Further Optimize the «Component»


e.g. Ultra-High Speed Machines, Ultra-Efficient Converter, ...

▶ 2nd Option for Gaining Competitive Advantage: *Target Future Mechatronic Systems*

- Target «System Level» and have Competences to Bridge the Boundaries between > 3 Key Areas
- Opens Path to Endless Product Innovation → «Multiplication by Infinity»

Electrical Drives: Performance Trends

Compact & Lightweight Drives
Power Electronics Integration
Fault Tolerant Systems
High Energy and Cost Efficiency
High Accuracy & Dynamics
Extreme Ambient Conditions

Electrical Drives: Performance Trends

Compact & Lightweight Drives

Power Electronics & Integration
Fault Tolerant Systems
Minimum Energy/Cost in Manufacturing
High Accuracy & Dynamics
Extreme Ambient Conditions

▶ Requirements for Electric Transportation Systems

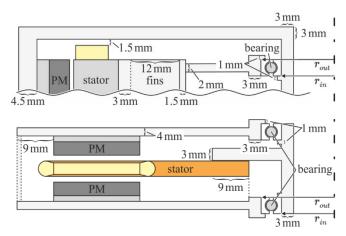
■ In-Wheel Drives for Electric Vehicles

- High Controllability
- Better Vehicle Response
- More Free Space in the Vehicle
- Very Tight Space Constraints
- P_{nom} 54 kW
- n_{max} 1400 r/min D_{out} 420 mm L_{ax} 56 mm

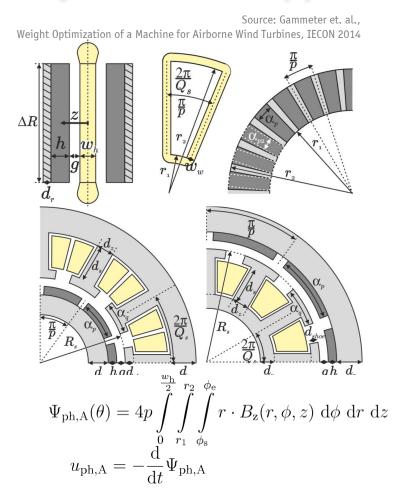
- m_{tot} 31 kg (incl. Inverter)

■ More Electric, Hybrid, All Electric Aircraft

- Reduced Fuel Costs
- Silent Propulsion
- Low-Weight Electrical Machines (Propulsion Motor, Gas Turbine Driven Generator)
- P_{nom} 260 kW ($\eta = 95\%$)
- n_{max} 2500 r/min
- D_{out} 418 mm L_{ax} 300 mm
- m_{tot} 50 kg (incl. Prop. Bearing)

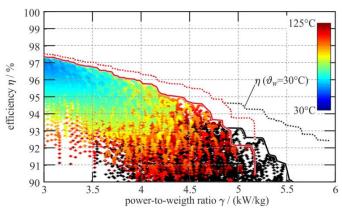

▶ Pushing the Performance of Conventional Systems to the Limit (1)

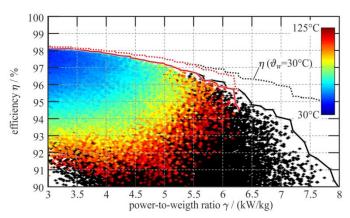
■ Comprehensive Machine Models

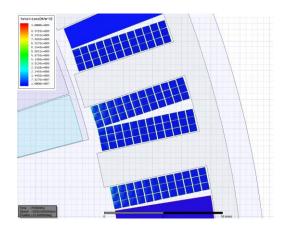

- Magnetic field, torque, losses
- Structural mass
- Thermal behavior

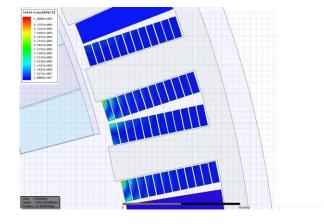
■ Advanced Machine Topologies

- Hallbach array
- Cobalt-iron alloy or air core
- Copper or aluminum coils


Structural mass model

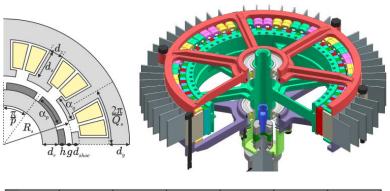

▲ Electromagnetic models

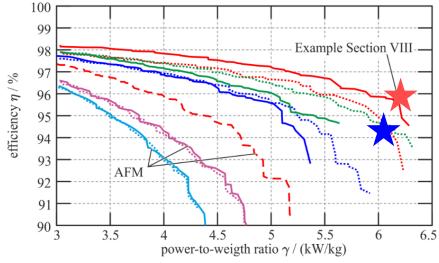

▶ Pushing the Performance of Conventional Systems to the Limit (2)



▲ AFM with distributed windings and Halbach magnetization

▲ Inrunner RFM with segmented Halbach magnetization


▲ 2-D FEM for Proximity Loss Calculation



► Reliable, Efficient and Compact Electrical Drives

- **Comprehensive Multiphysics Machine Models** (Electromagnetic, Mechanical, Thermal)
- Multi-Objective Pareto-Optimization to find Optimal Design Parameters

RFM outrunner no tip RFM outrunner with tip — AFM trapez, magnets, dist, windings

RFM inrunner no tip

...... AFM rect. magnets, dist. windings — AFM trapez. magnets, conc. windings

..... RFM inrunner with tip

...... AFM rect. magnets, conc. windings

RFM Halbach inrunner no tip — AFM Halbach, dist. windings

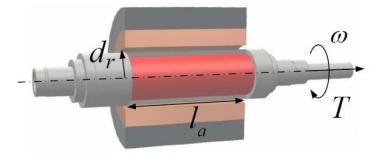
..... RFM Halbach inrunner with tip

► Increasing Power/Torque Density

■ Esson's Scaling Law for Electrical Machines

Machine Torque Machine Speed

- Mechanical Power $P_{\rm m} = \omega T$
- Machine Torque $T = c l_a d_r^2$



$$T = c l_a d_r^2$$

Rotor Diameter

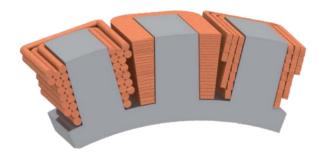
Axial Length of Machine

Machine Size

Utilization Factor

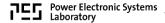
- Machine topology
- **Materials**
- Manufacturing methods
- Cooling

► Increasing the Machine Utilization Factor (1)


■ Degrees-of-Freedom for Improved Utilization

- Manufacturing methods
- Materials
- Cooling

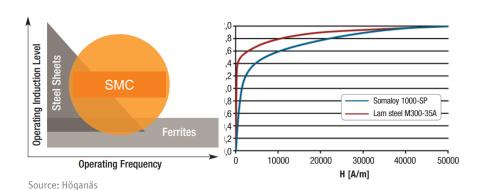
– Cast coils:

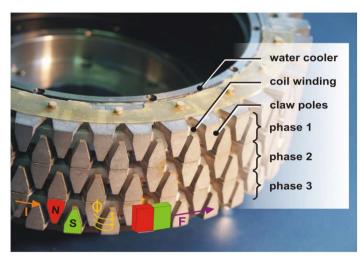

- + Very high filling factor
- + Low-cost
- + Aluminum or copper
- + High power densities
- High-frequency losses

► Increasing the Machine Utilization Factor (2)

■ Degrees-of-Freedom for Improved Utilization

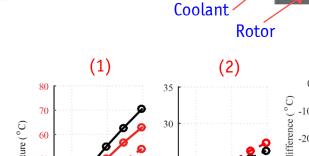
- Manufacturing methods
- Materials
- Cooling


– Soft magnetic composites (SMC):


- + 3-D electrical insulation
- + Low eddy-current losses
- + Transversal- or Axial-Flux Machines
- Mechanical strength
- Low magnetic permeability

Source: qkn.com

Source: Bauer, Kleimaier, Observer Based Sensorless Predictive Hysteresis Control of a Transverse Flux Machine, ICEMS 2014

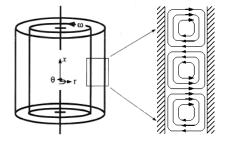

Core

Source: integy.com

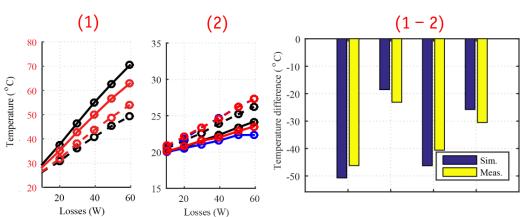
► Increasing the Machine Utilization Factor (3)

■ Degrees-of-Freedom for Improved Utilization

- Manufacturing methods
- Materials
- Cooling
- Integrated cooling (slotless machines)
 - + Smart design: Fast empirical models for cooling $Magnetic \leftrightarrow Mechanical \leftrightarrow Thermal$
 - + > 40 °C hotspot temp. reduction



(1) Jacket cooling


(State of the art)

(2) Integrated cooling

Winding

Source: Childs, Long, A Review of Forced Convective Heat Transfer in Stationary and Rotating Annuli, 1996

Source: Tüysüz et. al., Advanced Cooling Concepts for Ultra-High-Speed Machines, ICPE 2015

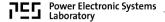

► Industry Trend: High Rotational Speed for High Compactness

■ Ultra-High-Speed Drives have Numerous Applications Across Industries

1) Mechanical Power $P_{\rm m} = \omega T$

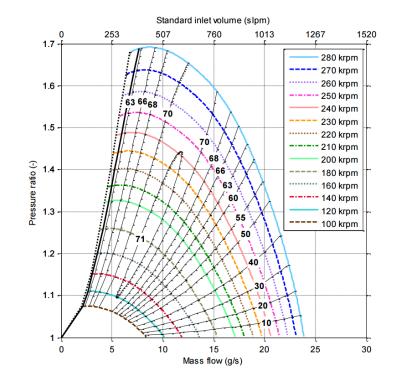
2) Machine Torque

 $T = C L D^2$



► Ultra-High-Speed Micro-Machining Applications

- Rotational Speed: 250′000 1′000′000 r/min
 - Smaller Feature Size (μ-vias for Consumer Electronics)
 - Higher Precision in Manufacturing
 - Accelerated Manufacturing Process
 - Higher Productivity

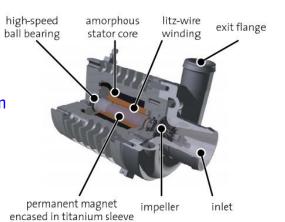


▶ High-Speed Turbocompressor for Portable Fuel Cell

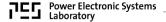
- Reduced Weight/Volume
- **Increased Pressure Ratio**

Commercially available compressors		
Speed (r/min)	280 000	18 000
Pressure ratio	1.6	1.4
Mass flow (g/s)	15	15
Weight (kg)	0.6	4

▶ Ultra-Compact Turbocompressor for *«Solar Impulse»*


■ Cabin Pressurization in Solar-Powered All-Electric Aircraft

• Compact machine design with 150 W, 150'000 r/min


Source: Zwyssig et. al., A Miniature Turbocompressor System, SES 2008

Rotational Speed 500'000 r/min Machine Power 150 W Mass Flow 1.2 g/s Compression Ratio 1.8

► High-Speed Air-to-Power Systems

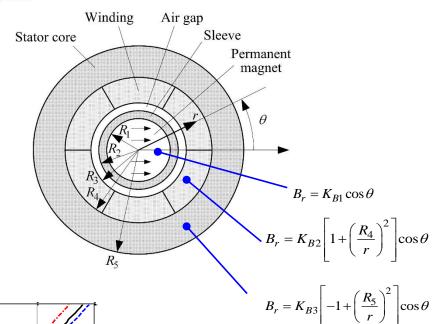
- Local Electric Power Generation from Compressed Air of Pneumatic Supply
 - Supply of Compressed Air Already in Place for Pneumatic Components
 - Robust Air Hose Instead of Electrical Wiring

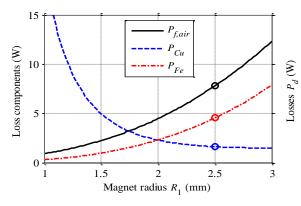
Compressed Air Input 3..8 bar **Electrical Power Output** 100 W Ultra Compact Design 20 x 50 mm **Litz Winding Turbine** Air Outlet Diffuser **Ball Bearing Pressurized** Air Inlet Rotor **Amorphous** Sm₂Co₁₇ magnet Stator Iron

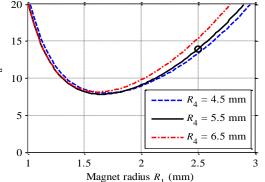
Source: Kolar et. al.,

Beyond 1 000 000 rpm Review of Research on Mega-Speed Drives, COBEP 2007

Magnetic Design of Ultra-High-Speed Drives


Magnetic Design is Key Challenge at High Rotational Speed

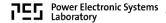

1-Pole Pair Slotless PM Machine


- Low Armature Reaction: Low Rotor Losses
- Litz Wire Stator Windings
- Amorphous Iron Stator Core

Optimization of Machine Geometry

- Analytical Field Models
- Skin and Proximity Losses
- Air Friction Loss in Air Gap
- Strand Packing Fill Factor vs. Wire Diameter

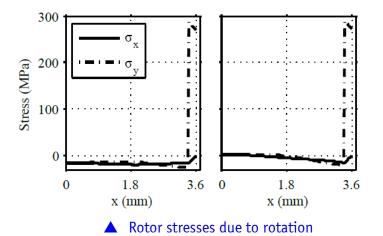
$$P_{f,air} = c_f \pi \, \rho_{air} \omega^3 R_2^4 L$$

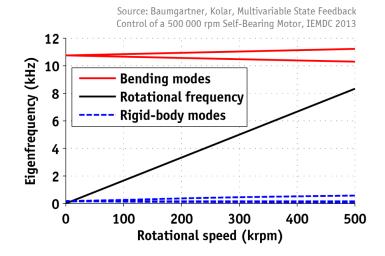

$$P_{f,air} = c_f \pi \rho_{air} \omega^3 R_2^4 L$$

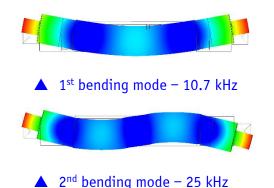
$$P_{Cu} = P_{Cu,s} + P_{Cu,p} = I^2 F + G \frac{\hat{H}^2}{\sigma}$$

$$P_{Fe} = \int_{V_-} C_m \cdot f^{\alpha} \cdot \hat{B}^{\beta} dV$$

$$P_{Fe} = \int_{V_{Fe}} C_m \cdot f^{\alpha} \cdot \hat{B}^{\beta} dV$$

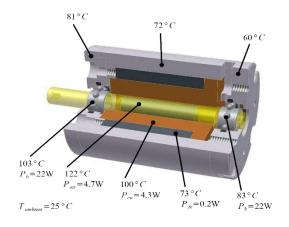

► Rotor Design Challenges at Ultra-High-Speeds

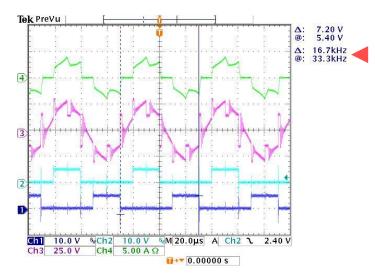

Rotor Dynamics


- Bending Modes Limit Maximum Speed
- Rigid-Body Modes Within Operation

■ Stresses due to Centrifugal Force

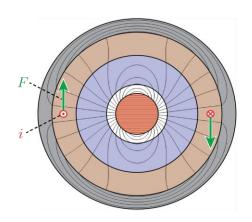
- Metallic or Composite Sleeve Needed
- Tight Tolerances for Interference Fit

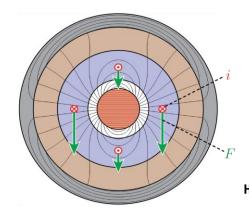




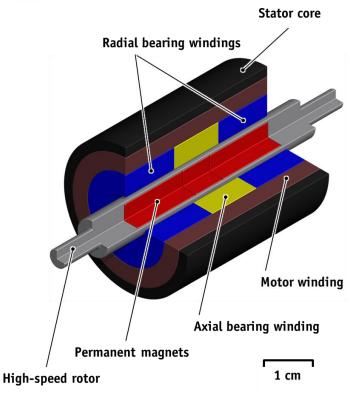
► 1'000'000 r/min- World Record Drive System

- **Demonstration of Machine Design Principles** by 100 W / 1'000'000 r/min Drive System
 - P_{loss} 9 W (excl. bearings) D_{rotor} 3 mm



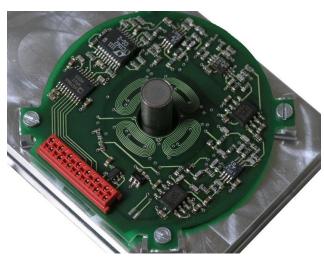


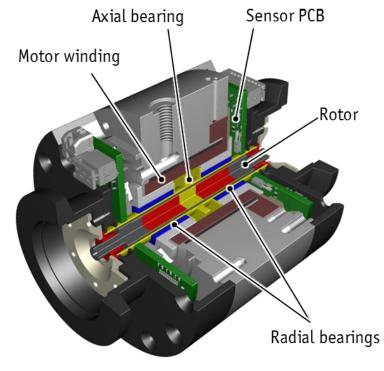
► Advanced Bearing Systems: Magnetic Bearings

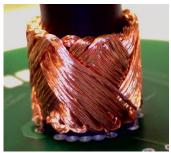

- Lifetime of Ball Bearings Limits Rotational Speed of Electric Machine
- Active Magnetic Bearings
 - + No Wear, Long Lifetime
 - + Control of Rotor Dynamics
 - Limited Load Capacity
 - High Bandwidth / Complex Control
 - Accurate Displacement Sensing

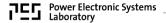
▲ Drive torque

▲ Radial bearing force

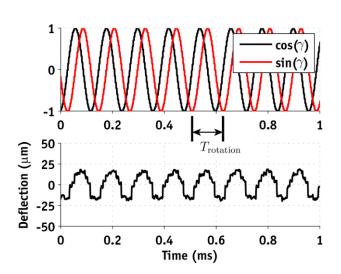


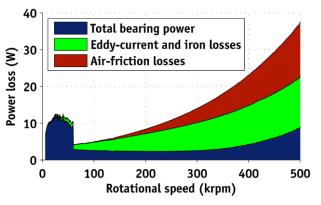

► Advanced Bearing Systems: Magnetic Bearings


■ Lifetime of Ball Bearings Limits Rotational Speed of Electric Machine

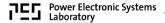

■ Active Magnetic Bearings

- + No Wear, Long Lifetime
- + Control of Rotor Dynamics
- Limited Load Capacity
- High Bandwidth / Complex Control
- Accurate Displacement Sensing

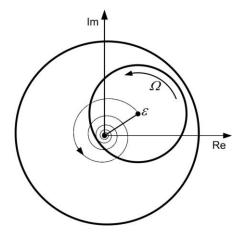


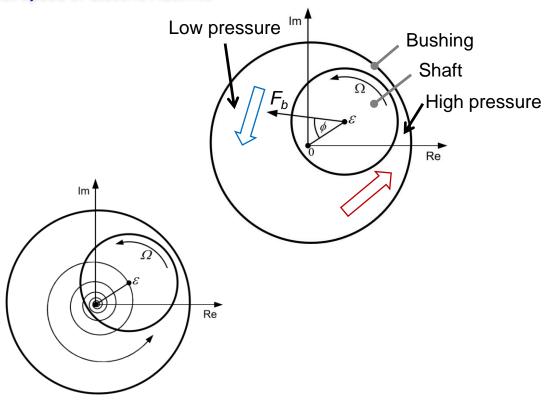

▶ World Record Magnetic Bearing with 500′000 r/min

 Demonstration of Active Magnetic Bearing Concept at World-Record Speed of 500'000 r/min



Source: Baumgartner, Kolar, Multivariable State Feedback Control of a 500 000 rpm Self-Bearing Motor, IEMDC 2013



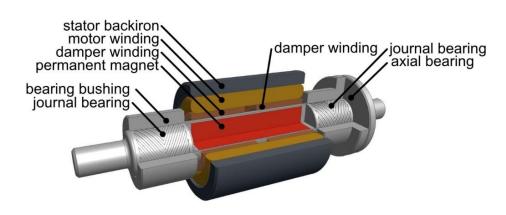


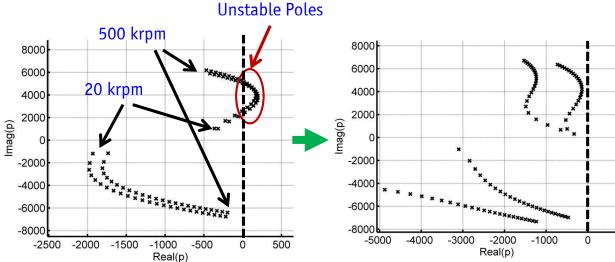
► Advanced Bearing Systems: Hybrid Bearings

- Lifetime of Ball Bearings Limits Rotational Speed of Electric Machine
- **Gas Bearings**
 - + No Wear, Long Lifetime
 - + High Stiffness, Load Capacity
 - Self-Excited Whirl / Damping

Stable orbit with sufficient internal damping (gas-film) usually at lower speeds

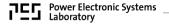
Unstable orbit with insufficient damping (usually at higher speeds)

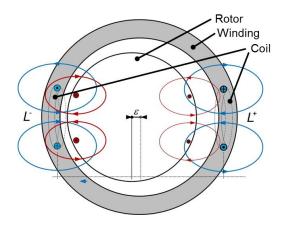


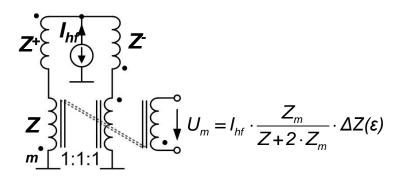

► Advanced Bearing Systems: Hybrid Bearings

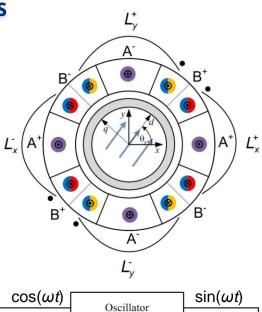
Gas Bearings

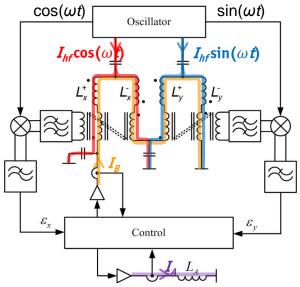
- + No Wear, Long Lifetime
- + High Stiffness, Load Capacity
- Self-Excited Whirl / Damping

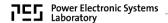




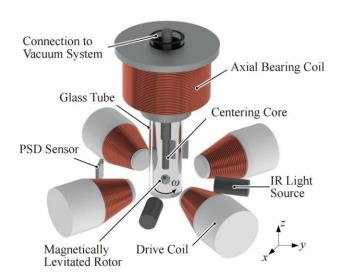

Source: Looser, Kolar, An Active Magnetic Damper Concept for Stabilization of Gas Bearings in High-Speed Permanent-Magnet Machines, IEEE Trans. on Ind. Elect., 2014


► Advanced Bearing Systems: Hybrid Bearings


■ Accurate Self-Sensing Method using Damper Windings

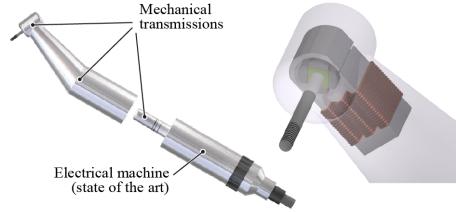


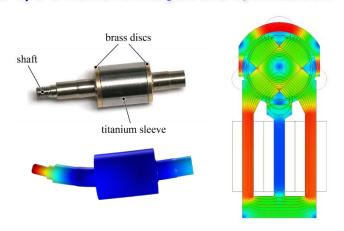
Source: Looser, Kolar, An Active Magnetic Damper Concept for Stabilization of Gas Bearings in High-Speed Permanent-Magnet Machines, IEEE Trans. on Ind. Elect., 2014

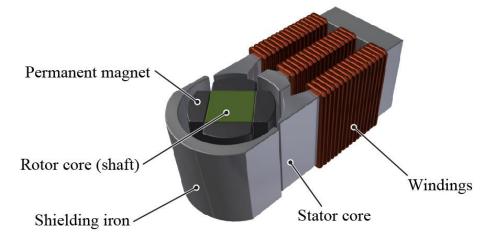


► Exploring the Limits: 40′000′000 r/min Electric Drive

- Demonstrator System for Highest Recorded Rotational Speed for Electric Machines
 - Development of Novel Control Concepts for Ultra-High Speed
 - Material Testing at Highest Centrifugal Acceleration

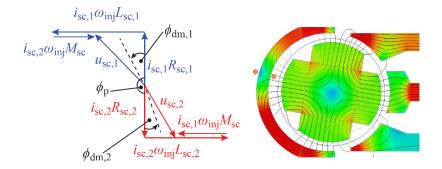

Source: Schuck et. al., Electromagnetic Suitability Analysis and Characterization of Ultra-High Speed Spherical Steel Rotors, INTERMAG 2016



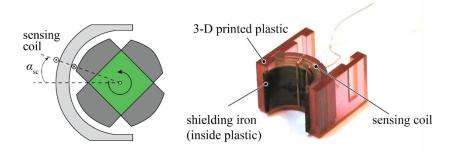

► Application-Specific Machine Concepts (1)

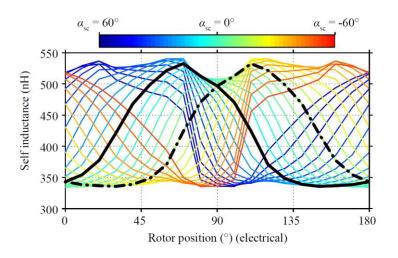
- Optimization of Machine Design for Application Specific Requirements
- Lateral-Stator Machine Concept
 - Novel Actuator Topology
 - Direct Drive
 - 3 x Higher Local Torque Density

■ 2/3-D Numeric Analysis and Optimization



Tüysüz, Kolar, Comparison of lateral- and cylindrical-stator electrical machines for high-speed direct-drive applications in confined spaces, APEC 2016


► Application-Specific Machine Concepts (2)


- **Optimization of Machine Design for Application Specific Requirements**
- Lateral-Stator Machine Concept
 - Novel Actuator Topology
 - Direct Drive
 - 3 x Higher Local Torque Density

■ Topology-Specific Integrated Position Sensor

- Compact Realization
- Load Independent

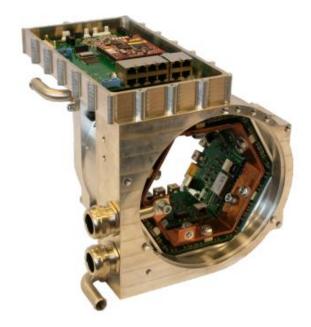
Electrical Drives: Performance Trends

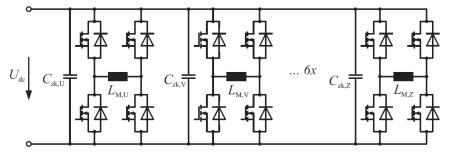
Compact & Lightweight Drives

Power Electronics & Integration

Fault Tolerant Systems

Minimum Energy/Cost in Manufacturing
High Accuracy & Dynamics


Extreme Ambient Conditions



► Integration of Power Electronics & Electrical Machine (1)

- Highest Compactness by Integration
 - Shorter Connections betw. Components
 - Common Housing and Cooling System for Motor & Inverter
- 6-Phase Open-Windings Machine with **Full Bridges using DirectFET**

 f_{out} 0 - 500 Hz f_{sw} 50 kHz kHz

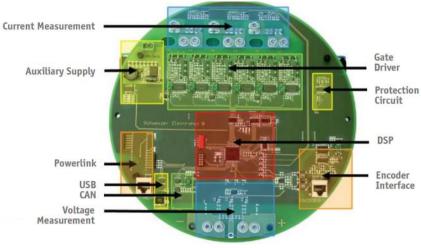
- + Fault Tolerant Design
- Number of Power Switches

Source: Engelmann et. al. A Highly Integrated Drive Inverter using DirectFETs and Ceramic DC-Link Capacitors for Open-End Winding Machines in Electric Vehicles, APEC 2015

► Integration of Power Electronics & Electrical Machine (2)

■ Highest Compactness by Integration

- Shorter Connections betw. Components
- Common Housing and Cooling System for Motor & Inverter

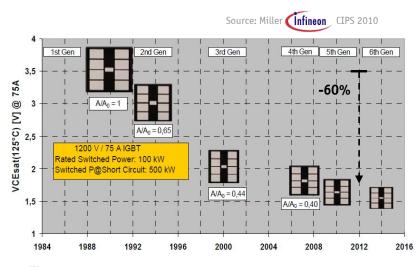

■ 3-Phase Si-IGBT Inverter in p²pack-Technology

• S_{nom} 32 kVA

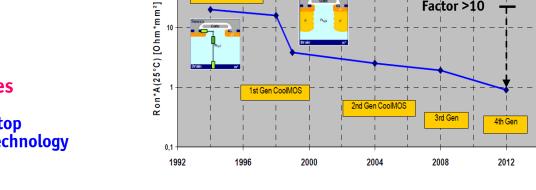
• V_{in} 700 V

• $f_{\text{out}} = 0 - 800 \text{ Hz}$

• f_{sw} 20 kHz

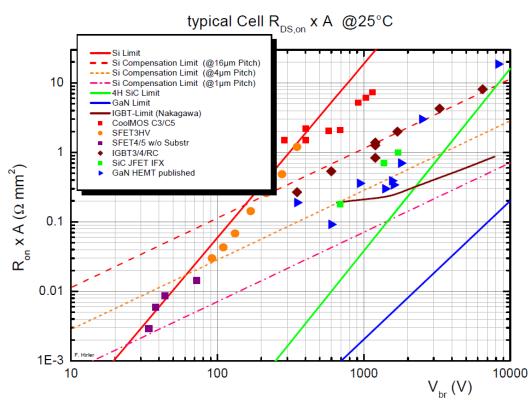


▶ Si Power Semiconductors


2nd Gen CoolMOS

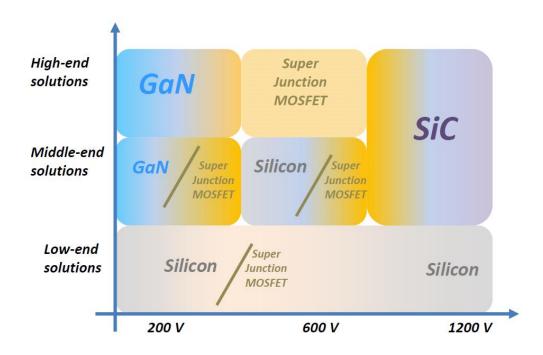
Factor >10

- IGBT
- Trench & Field-Stop Superjunction Technology


1st Gen CoolMOS

conventional MOS

WBG Power Semiconductors


- **Disruptive Change**
- Extremely Low $R_{DS(on)}$ Very High $T_{j,max}$ Extreme Sw. Speed

■ Utilization of Excellent Properties → Main Challenges in Packaging (!)

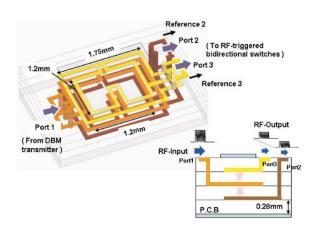
▶ WBG Power Semiconductors

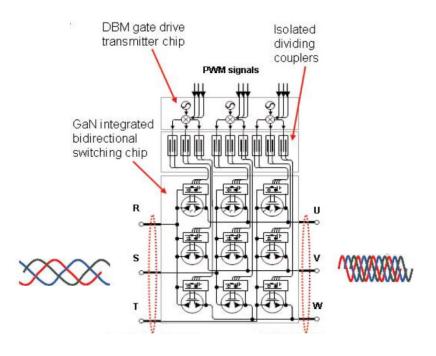
■ Application Perspectives

Source: Honea PEDG 2013

transphorm

What Yole Developement showed in 2011 as future view

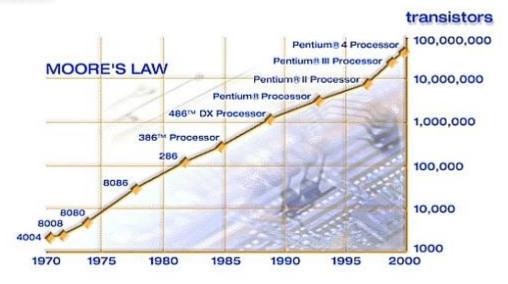



► Latest Systems Using WBG Devices → GaN

Source: Panasonic ISSCC 2014

- GaN 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology
- 9 Dual-Gate Normally-Off Gate-Injection Bidirectional Switches
- DBM Gate Drive Transmitter Chip & Isolating Dividing Couplers
- Extremely Small Overall Footprint 25 x 18 mm² (600V, 10A 5kW Motor)

5.0GHz Isolated (5kVDC) Dividing Coupler

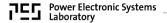

► Moore's Law: Key Enabler for Advanced Mechatronics

■ Micro-Controllers with Ever-Higher Signal Processing Capability

- Advanced Control Algorithms (e.g. Model Predictive Control)
- Image Recognition in Robotic Applications
- Fast-Closed Loop Control for High-Bandwidth Systems

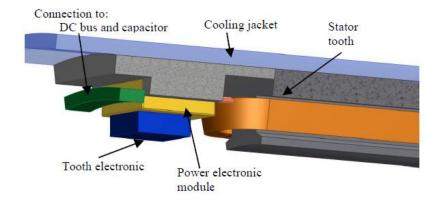
■ Improved Computer-Aided Design Methods

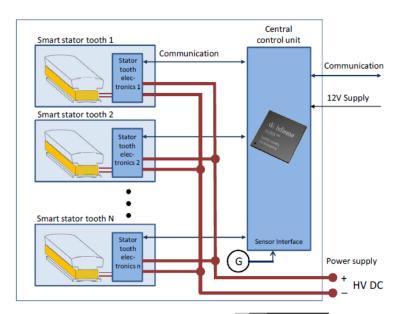
- Finite-Element-Method Evaluation of Designs
- Fully Virtual Prototyping and Multi-Physics Evaluation before Hardware Realization

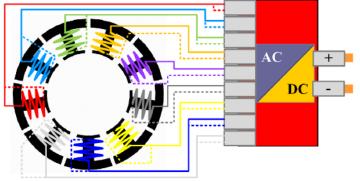

Electrical Drives: Performance Trends

Compact & Lightweight Drives
Power Electronics & Integration

Fault Tolerant Systems


Minimum Energy/Cost in Manufacturing High Accuracy & Dynamics Extreme Ambient Conditions





► Smart Tooth Concept for Fault Tolerant Machines

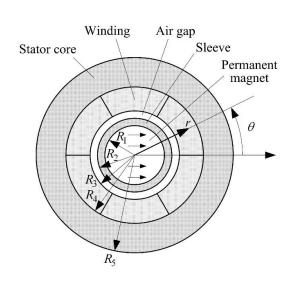
- Smart Tooth Concept
 - Stator Segment
 - Power Electronics
 - Control Electronics
- **Higher Power Density**
- **Fault Tolerance**
- **■** Higher Efficiency
- Lower Cost

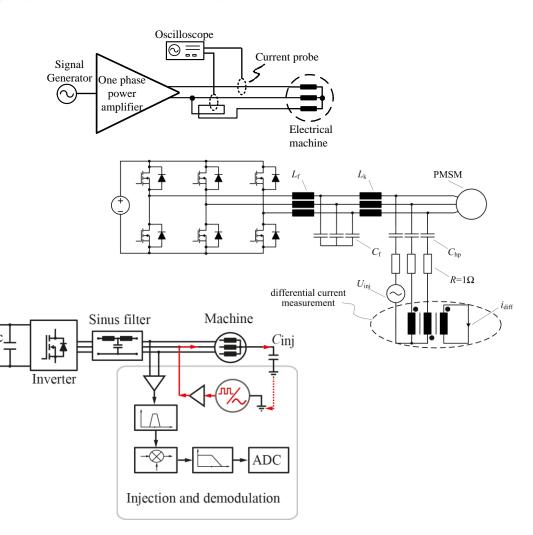

Source: Brockerhoff et. al. Highly Integrated Drivetrain Solution: Integration of Motor, Inverter and Gearing, EDPC 2014

▶ Self-Sensing High-Reliability Drive Systems

■ Elimination of the Position Sensor

- Increased Reliability
- Compact & Cost Effective
- Additional Signal Processing
- Challenging for Certain Machine Types



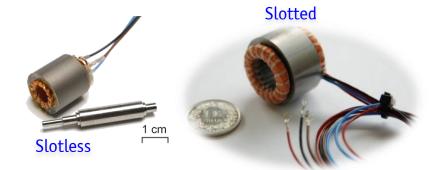


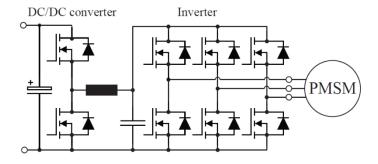
▶ Optimum Control of High-Speed Electrical Drives

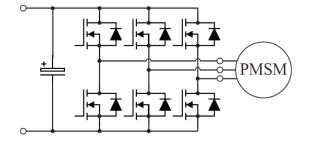
Sensorless Position Sensing

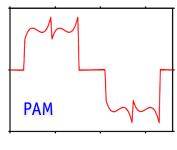
- Symmetrical Construction
- Very Low Saliency
- High-Frequency Signal Injection
- Differential Measurements
- Integration with Drive Inverter

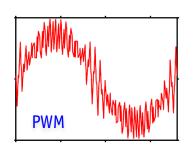
Electrical Drives: Performance Trends

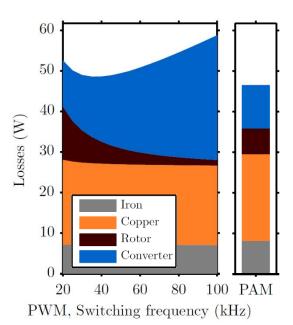

Compact & Lightweight Drives
Power Electronics & Integration
Fault Tolerant Systems
Minimum Energy/Cost in Manufacturing
High Accuracy & Dynamics
Extreme Ambient Conditions

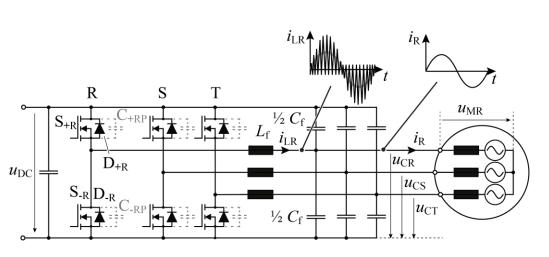


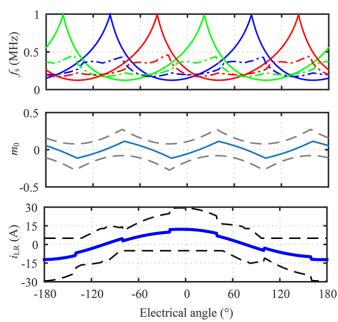

▶ Optimized Modulation Scheme for High Efficiency


■ Modulation Scheme as a Degree-of-Freedom


- Optimum Selection Depends on
 - Machine Type
 - Rotational Speed
 - Loss Distribution
 - Power Level



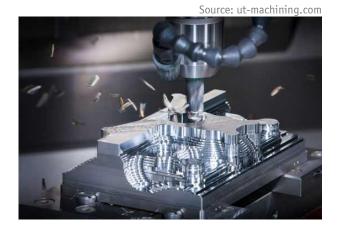

Source: Schwager et. al., Modeling and Comparison of Machine and Converter Losses for PWM and PAM in High-Speed Drives, IEEE Trans. on Ind. Appl., 2014



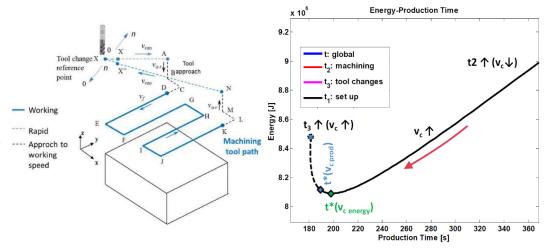
Optimized Modulation Scheme for High Efficiency

■ Soft-Switching Drives with Sinusoidal Output

- Compact Filter
- Electromagnetically Quiet Switching
- Low Switching Losses
- Variable Switching Frequency
- HF Flux in Inductor
- Zero-Sequence Voltage
- Current Envelope



Source: Kaufmann et. al., New Optimum Modulation of Three-Phase ZVS Triangular Current Mode GaN Inverter Ensuring Limited Switching Frequency Variation, PEMD 2016


► Increased Productivity in Manufacturing

- Industry Consumes 43% of the Electricity Production Globally
 - In Germany as much as 47%
 - Machining is a Major Energy Consumer
 - Metal Cutting has Largest Share in Automotive Industry
- **High Motivation for Sustainable Manufacturing**
 - Legislative Initiatives: 2009/125/EC and 2012/27/EU
 - Cost Savings from Reduced Energy Consumption

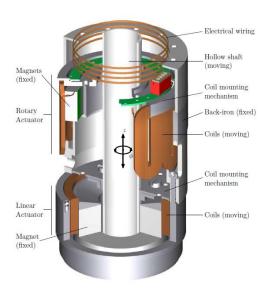
Multi-Objective Optimization for Competing Design Goals

- Low Energy consumption, low wear, short manufacturing time
- What is optimum cutting trajectory
 & speed, feed rate, ...

Source: Calvanese et.al., Analysis of Energy Consumption in CNC Machining Centers and Determination of Optimal Cutting Conditions, CIRP 2013

Electrical Drives: Performance Trends

Compact & Lightweight Drives
Power Electronics & Integration
Fault Tolerant Systems
Minimum Energy/Cost in Manufacturing
High Accuracy & Dynamics
Extreme Ambient Conditions

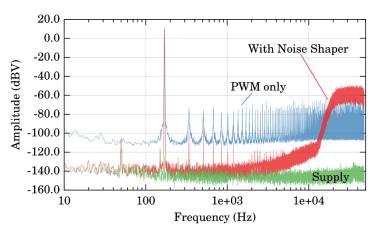


▶ Motion Control with Extreme Accuracy & Dynamics

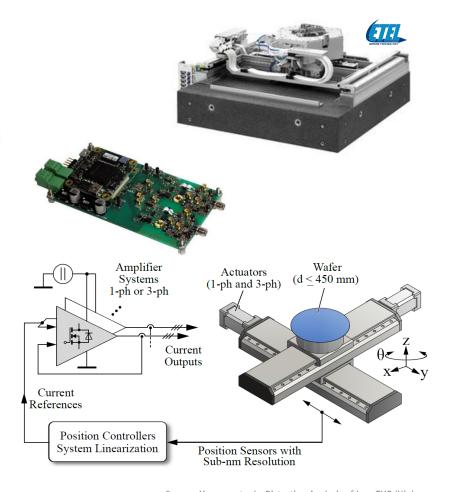
■ High Positioning Accuracy

- Wafer Processing/Inspection
- Air Bearings
- Active Isolation System for Vibration Decoupling
- $S_{X,Y}/S_Z$ 320/12 mm • $a_{X,Y}/a_Z$ 1.2/0.2 g • a_{ϕ} 1 000 rpm/s
- Position Stability: ±25 nm, ±1 µrad
- Bidirectional Repeatability: ±0.4 μm, ±10 μrad

■ Highly Dynamic Operation


- High Throughput Pick & Place: 10 000 pcs/hr
- Integrated Linear and Rotational Actuator
- S_{ϕ} 1 turn • S_{7} 10 mm
- a_7 15 g
- a_{ϕ} 73 500 rpm/s
- Linear Accuracy: 5 μm
- Rotational Accuracy: 3 mrad

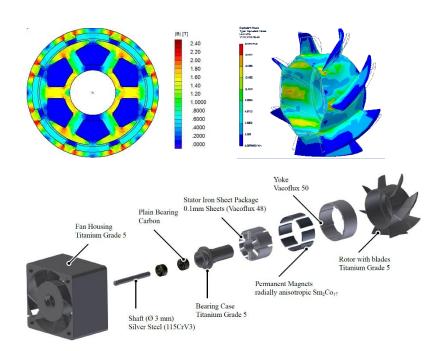
Source: Overboom et. al., Design and Optimization of a Rotary Actuator for a Two Degree-of-Freedom z-φ Module, IEEE Trans. on Ind. Appl. 2010



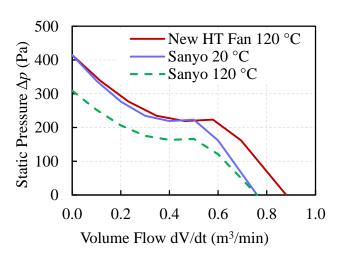
► High-Precision Amplifiers for Mechatronic Applications

- 1 or 3-Phase nm-Precision Positioning System
 - Linear/Rotational Permanent Magnet Machine
 - Magnetic Bearing System to Avoid Friction
 - Ultra-Low Noise/Distortion of Output Current
 → SNR & THD > 100 dB Required
- In-Depth Analysis of Noise/Distortion Sources in all System Components (Power Stage, Control, etc.)
- High-Quality Current Shaping with Fast-Switching WBG Power Semiconductors (GaN, SiC)

Source: Mauerer et. al., Distortion Analysis of Low-THD/High-Bandwidth GaN/SiC Class-D Amplifier Power Stages, ECCE 2015

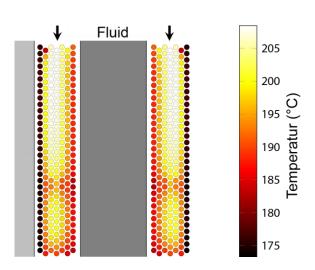

Electrical Drives: Performance Trends

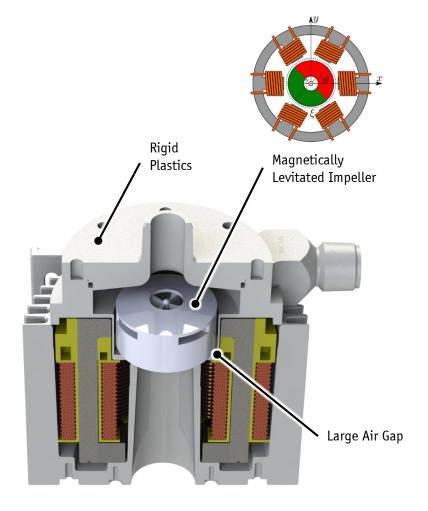
Compact & Lightweight Drives
Power Electronics & Integration
Fault Tolerant Systems
Minimum Energy/Cost in Manufacturing
High Accuracy & Dynamics
Extreme Ambient Conditions



► Extreme Temperature Drive System

- Extreme Ambient Temperatures Common in Automotive Applications (e.g. Hybrid EV)
 - Cooling of Power Electronics Critical
 - High Complexity of Liquid Cooling System
 - Dedicated High Temp. Fan Required for Forced-Air Cooling


► High-Temperature Pump for Acidic Environment


Pumping of Sulfuric Acid at up to 280°C

- · Magnetic Levitation to Avoid Mech. Shaft
- No Particle Generation/Fluid Contamination

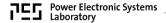
■ Key Design Challenges

- Mechanical Stability Despite Thermal Expansion
- Chemical & Thermal Resistance
- High-Temperature Eddy-Current Sensor
- Self-sensing for Rotor Angle Detection

► Selected Applications in Future Mechatronics

Selected Applications in Future Mechatronics

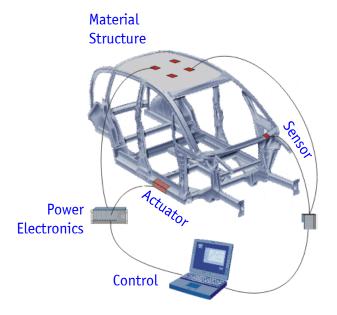
Advanced Manufacturing
Future Mobility
Healthcare & Medical
Renewable Energy
Space Applications
Developing World

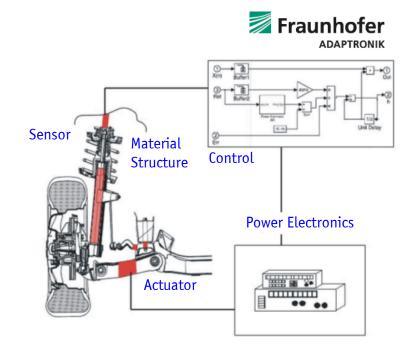


Selected Applications in Future Mechatronics

Advanced Manufacturing

Future Mobility
Healthcare & Medical
Renewable Energy
Space Applications
Developing World




► Adaptronics: Adaptive Mechanical Structures

■ Lightweight Mechanical Structures with Active Piezoelectric Vibration Damping

Flexible Piezoelectric Fibers Incorporated in Material Layers

▶ Robots for Autonomous Construction

- Contour Crafting: Large *«3D Printer»* 185 m² House in Under 24 Hours

 - Low Cost / Low Waste

- Fast Brick Laying Robots
 - Faster Construction

Source: spectrum.ieee.org/automation/robotics/industrial-robots/robots-do-construction-with-brick-and-concrete

Selected Applications in Future Mechatronics

Advanced Manufacturing
Future Mobility
Healthcare & Medical
Renewable Energy
Space Applications
Developing World

► Hybrid & Battery Electric Vehicles

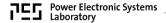
- 25% of Global CO₂-Emissions Caused by Transportation Sector
 Replace Fossil Fuels by Renewable Electrical Power

 - Smaller CO₂-Footprint and Lower Total Cost of Ownership

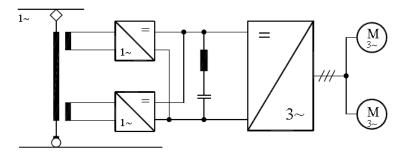
■ Main Technology Enablers/Drivers

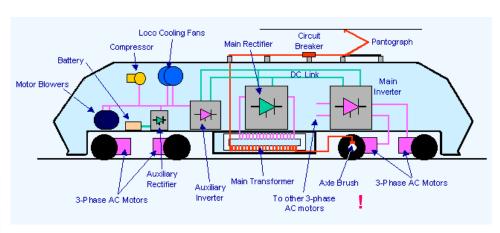
- Battery Energy/Power Density & Cost
- Charging Technology & Infrastructure
- (Cost) Optimization & Integration of Powertrain and Power Electronics

Porsche Cayenne Hybrid S, www.porsche.de



Honda Accord Hybrid, www.honda.com




► Classical Locomotives

Catenary Voltage

15kV or 25kV - Frequency $16^2/_3$ Hz or 50Hz - Power Level 1...10MW typ.

Transformer:

Efficiency Current Density Power Density

90...95% (due to Restr. Vol., 99% typ. for Distr. Transf.) 6 A/mm² (2A/mm² typ. Distribution Transformer) 2...4 kg/kVA

▶ Next Generation Locomotives

■ Trends:

- Distributed Propulsion System → Volume Reduction (Decreases Efficiency)
- Energy Efficient Rail Vehicles → Loss Reduction (Requires Higher Volume)
- Red. of Mech. Stress on Track → Mass Reduction

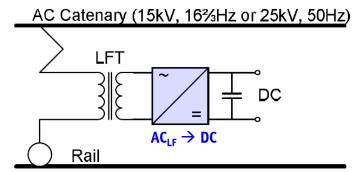


Fig. 1. Conventional AC-DC conversion with a line frequency transformer (LFT).

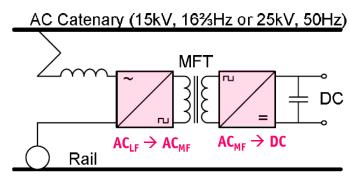
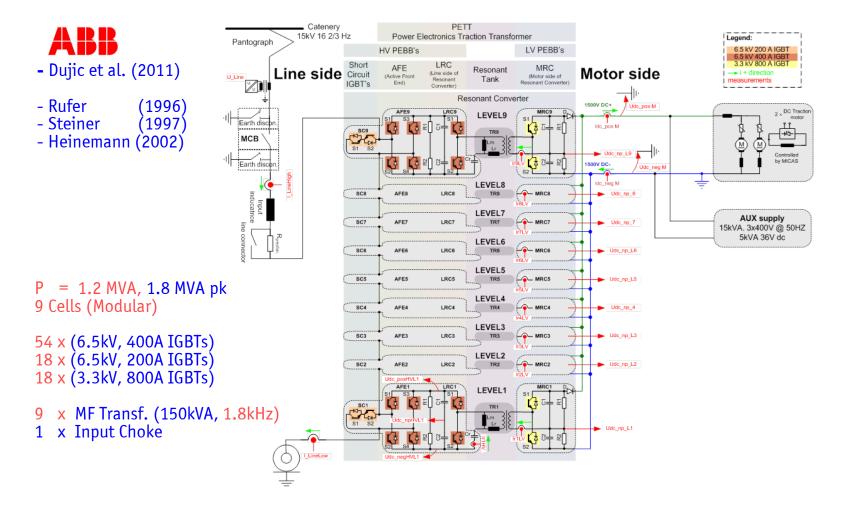
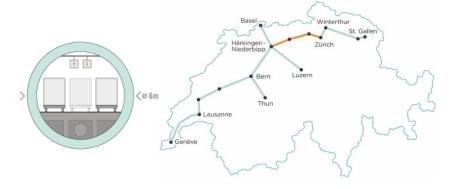
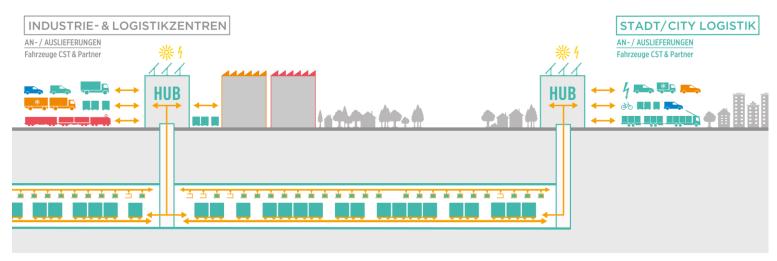



Fig. 2. AC-DC conversion with medium frequency transformer (MFT).

- Replace LF Transformer by Medium Frequency Power Electronics Transformer → SST
- Medium Frequency Provides Degree of Freedom → Allows Loss Reduction AND Volume Reduction

▶ 1ph. AC/DC Power Electronic Transformer - PET

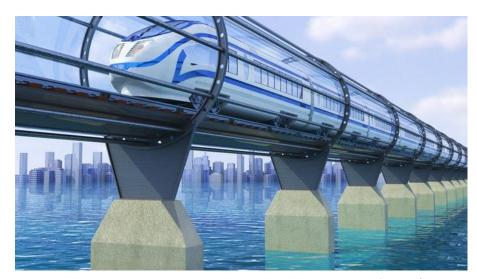




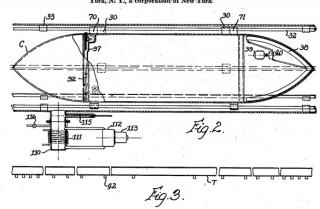
► Cargo Sous Terrain in Switzerland

Project in Switzerland for Novel Logistics System
 Developed and Fully Financed by Industry

Overground Transportation of PeopleUnderground Transportation of Goods



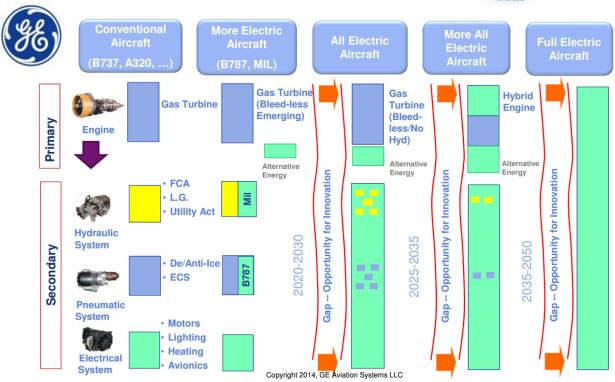
Source: cargosousterrain.ch


► Futuristic (!) Transportation: Hyperloop

Source: gizmag.com

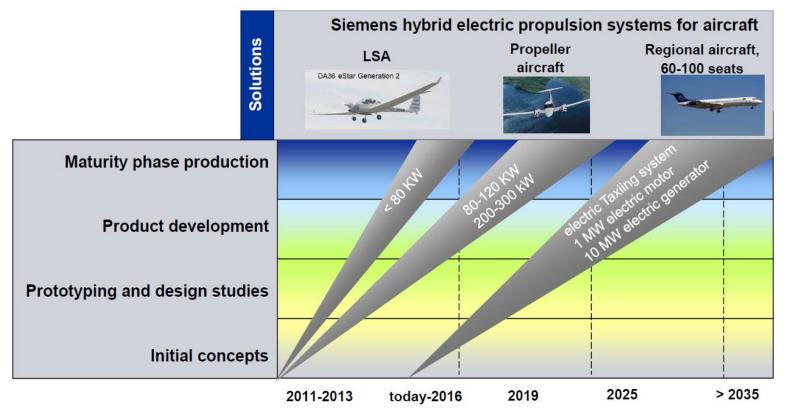
- Patented June 20, 1950 2,511,979
 - UNITED STATES PATENT OFFICE

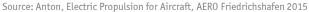
VACUUM TUBE TRANSPORTATION SYSTEM.
Robert H. Goddard, Annapolis, Md.; Esther C.
Goddard, executrix of said Robert H. Goddard,
deceased, assignor of one-half to The Daniel
and Florence Guggenheim Foundation, NewYork, N. Y., a corporation of New York


Robert H. Goddard Rhas P. Hawley

- High Speed Train in Evacuated Tube
- Los Angeles -> San Francisco in 30 Minutes
- Low Friction: Low Energy Costs
- Maglev or Hovercraft Technology

- **►** Towards the Full Electric Aircraft (1)
- Reduction of Fuel Consumption and CO₂-Footprint
 - Lower Noise Emissions and Environmental Impact
- Multi-Disciplinary Innovation Opportunities!



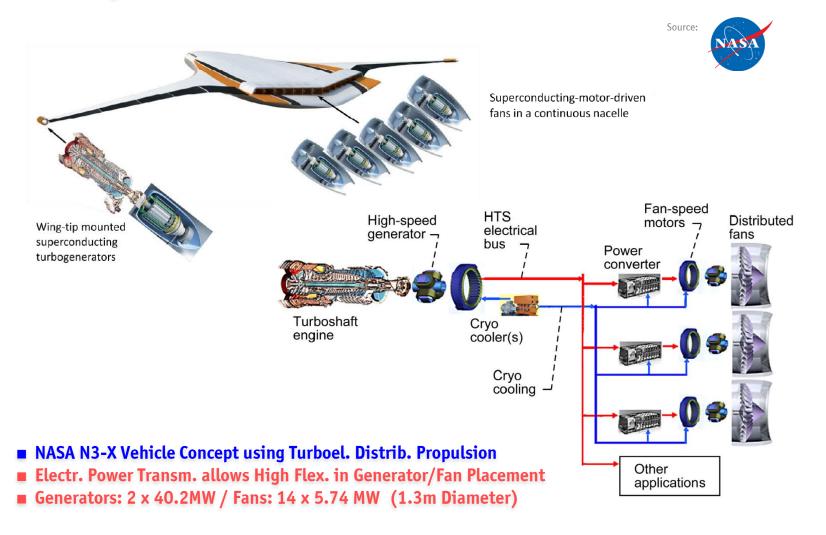

► Towards the Full Electric Aircraft (2)

■ Today: Full electric 2-seater planes for pilot training

Near Future: Electric propulsion for regional transportation

SIEMENS

► Future Hybrid or All-Electric Aircraft

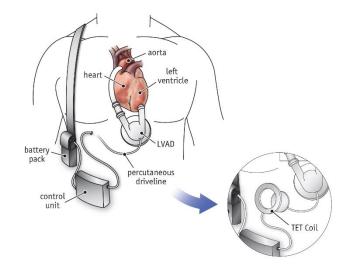


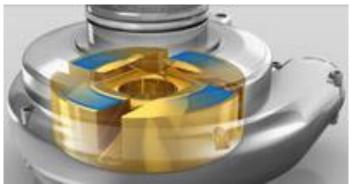
- Powered by Thermal Efficiency Optimized Gas Turbine and/or Future Batteries (1000 Wh/kg)
- Highly Efficient Superconducting Motors Driving Distributed Fans (E-Thrust)
- Until 2050: Cut CO₂ Emissions by 75%, NO_x by 90%, Noise Level by 65%

► Future Hybrid Aircraft

Selected Applications in Future Mechatronics

Advanced Manufacturing
Future Mobility
Healthcare & Medical
Renewable Energy
Space Applications
Developing World

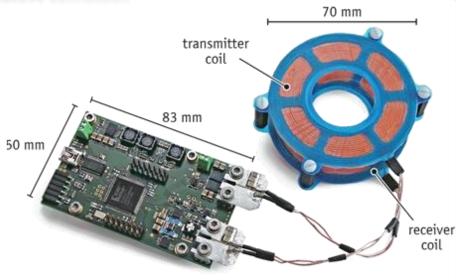



► Implantable Left-Ventricular Assist Device

■ Highly Compact Electrical Drive for Implantable Blood Pump

- Elimination of Ball Bearings for High Purity
- Hydrodynamic Thrust Bearing (Blood as Fluid)
- Passive Magnetic Bearings

Source: heartware.com

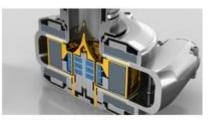

► Transcutaneous Power Supply

■ Implanted Devices with Ever-Higher Energy Demand (e.g. Heart-Assist Devices)

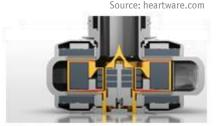
High Risk of Severe Infections due to Conductive Connection

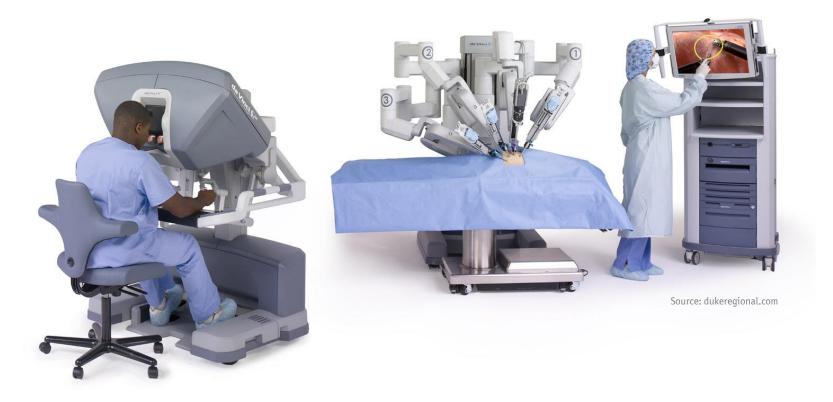
■ Fully-Implantable LVAD

- Wireless Power Transfer
- Wireless Communication
- Implated Battery Backup
- Implanted Motor Inverter
 & Electrical Blood Pump


Source: Knecht et. al., Optimization of Transcutaneous Energy Transfer Coils for High Power Medical Applications, COMPEL 2014

► Zurich Heart Project:




Passive magnets

Thin layer of blood

▶ Robotically Assisted Surgical Systems

- **Four Robotic Arms Holding a Camera and Surgical Instruments**
- **Complex Procedures with Minimum Invasion due to Small Incisions**
- Quicker Recovery Time and Shorter Hospital Stay

▶ Robotic Exoskeleton for Humans

■ Helping Patients with Partial Paralysis or for Rehabilitation After Injury

■ Assist Workers with Heavy Lifting or Other Manual Tasks

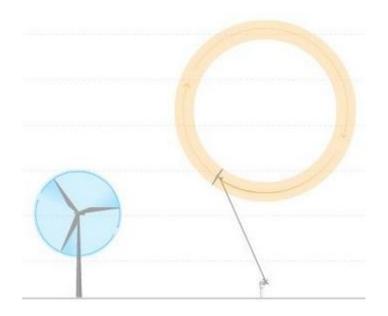
■ Protection of Firefighters/Soldiers in Harsh Environments

► High-Throughput Screening in Pharmaceutical Industry

- Automatic and Consistent Screening of Millions of Compounds for Different Diseases
- lacktriangle 40 Samples per Day by Hand ightarrow Hundreds of Thousands of Samples per Day Using Robots

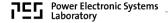
▶ Challenging Environments and Disaster Response

- Inspection of Oil-Gas Sites
- Human-Robot Teaming for Robot-Assisted Disaster Response


Selected Applications in Future Mechatronics

Advanced Manufacturing
Future Mobility
Healthcare & Medical
Renewable Energy
Space Applications
Developing World

► Airborne Wind Turbines

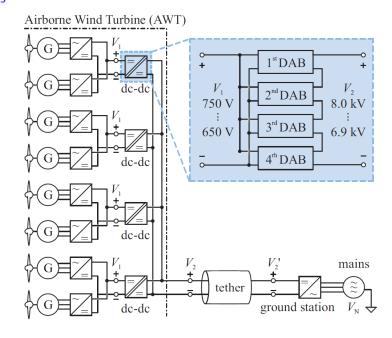

- Power Kite Equipped with Turbine / Generator / Power Electronics
- **Power Transmitted to Ground Electrically**
- Minimum of Mechanically Supporting Parts

▶ 100 kW Airborne Wind Turbine

■ Ultra-Light Weight Multi-Cell All-SiC Solid-State Transformer - 8kV_{DC} → 700V_{DC}

• Medium Voltage Port 1750 ... 2000 VDC

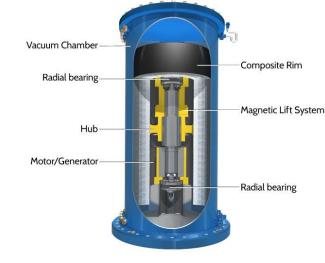
• Switching Frequency 100 kHz


• Low Voltage Port 650 ... 750 VDC

• Cell Rated Power 6.25 kW

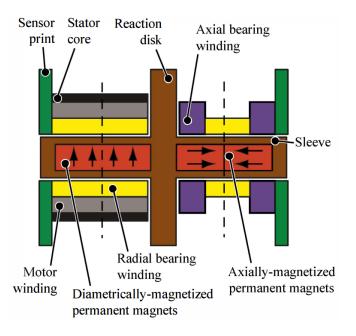
• Power Density 5.2 kW/dm³

• Specific Weight 4.4 kW/kg



► Renewable Energy

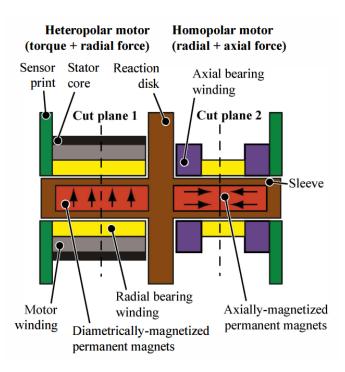
- **■** Grid Balancing
- **■** Renewable Integration
- Islands/Isolated Grids
- Market Competition
 - Cost (vs. Batteries)
 - Power Density (vs. Supercaps)
 - Niche Applications: Space etc.

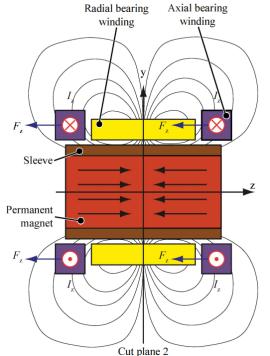

Selected Applications in Future Mechatronics

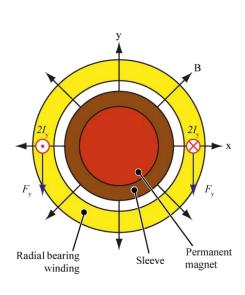
Advanced Manufacturing
Future Mobility
Healthcare & Medical
Renewable Energy
Space Applications
Developing World

► Space Application: Satelite Attitude Control

- Reaction Wheels are Widely Used for Satellite Attitude Control
- Currently Ball Bearings are Used Despite Disadvantages
- Magnetic Bearings Allow for
 - Less Microvibrations
 - Higher Speed: Smaller Reaction Wheel Size




Source nasa.gov



► Space Application: Satelite Attitude Control

- Reaction Wheels are Widely Used for Satellite Attitude Control
- Currently Ball Bearings are Used Despite Disadvantages
- Magnetic Bearings Allow for
 - Less Microvibrations
 - Higher Speed: Smaller Reaction Wheel Size

Selected Applications in Future Mechatronics

Advanced Manufacturing
Future Mobility
Healthcare & Medical
Renewable Energy
Space Applications
Developing World

► High-Altitude Drones

- Provide Internet Access to Large Underdeveloped Areas
- **Facebook Drone Research**
 - Solar Powered Drones
 - Stratospheric Flight

 - Can Stay Aloft for 90 days
 High-Speed Laser Communication Between Drones

Source: quardianly.com

Rural Power Generation

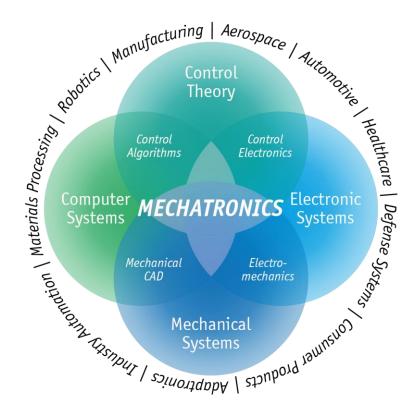
- 1.2 Billion "Bottom-of-the-Pyramid People" Lack Access to Clean Energy
- 17% of the Global Population

Source: IEA, Dalberg Analysis, IFC

- → Urgent Need for Village-Scale Solar DC Mirogrids etc.
 → 2 US\$ for 2 LED Lights + Mobile-Phone Charging / Household / Month (!)

Conclusions

Summary


Future Perspectives for Motion Control

- ► Possible Ways for *«Component»* Performance Improvement
 - Miniaturization of Electric Machines
 - Integration of Power Electronics
 - System Optimization (Converter & Actuator)
 - Application Specific Design
 - etc.
- ► Today's and Future High-Performance Systems Enable Countless Novel Application Areas
 - Healthcare & Medical Systems
 - Industry Automation & Robotics
 - Renewable Energy & Smart Grid
 - Mobility on Land/Air/Sea
 - etc.

▶ Mechatronic Systems

- Target «System Level» and Cover Core Competences in Mechatronic Areas
 - Interdisciplinary Engineering Knowledge
 - Application-Specific Combination of High-Performance Components
 - Characteristics
 - \rightarrow Smart
 - → Integrated
 - → Hybrid
 - → Ubiquitous
 - Future
 - → Automatization (Machine Learning)
 - → Modularization
 - → Links to Internet
 - → Society of Devices

► Endless Product Innovation Possible by Combination of Core Elements

Bounded only by

- Laws of Physics
- Material Properties
- Imagination / Vision

«Multiplication by Infinity»

Thank You!

