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Outline

► Impact of Switching Loss

► Electric Measurement
► Accurate Calorimetric Method

► Conclusion - Outlook
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Impact of 
Switching Loss Bridge Leg

Soft-Switching Operation
Impact on Efficiency and Volume
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Switching Loss – Bridge Leg

Dual Active Bridge

PFC Rectifier3-Phase Inverter

► > 1 Bridge Leg per Switching Power Converter
► Switching  Loss, Volume, Cost, …
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Switching Loss – Reduction

► Example
Inductor Current  
Switched Voltage

► Soft Zero Voltage Switching Operation (ZVS)
“…the load current has the direction of the anti-parallel diode of the turning on MOSFET…”
“…Eoss is exchanged between the load and the converter every switching cycle…”
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Switching Loss – Reduction

► Example
Inductor Current  
Switched Voltage

► Soft Zero Voltage Switching Operation (ZVS)
“…the load current has the direction of the anti-parallel diode of the turning on MOSFET…”
“…Eoss is exchanged between the load and the converter every switching cycle…”
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Switching Loss – Reduction

► Example
Inductor Current  
Switched Voltage

► 90% Switching Loss Reduction compared to Hard-Switching
► Enough?

► Soft Zero Voltage Switching Operation (ZVS)
“…the load current has the direction of the anti-parallel diode of the turning on MOSFET…”
“…Eoss is exchanged between the load and the converter every switching cycle…”
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Soft-Switching Loss – Impact

► The                 Little Box Challenge
Build the 2kW Inverter with the Highest Power Density in the World

► Losses Pie ► Volume Pie

► Bridge Leg

30% Losses 22.3W 96.3% @ 2kW
22% Volume 53cm3 8.2kW/cm3

VCooling > 90cm3

= k Ploss CSPI-1

[1]
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Electric
Measurement Double Pulse Test Method

Hard vs. Soft-Switching
Accuracy – Source of Error
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Electric Measurement
► Double Pulse Test (DPT)
Bridge Leg with Inductive Load

► Hard-Switching

Switched Voltage
Inductor Current
Switched Current

[2]
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► Double Pulse Test (DPT)
Bridge Leg with Inductive Load

► Hard-Switching

Switched Voltage
Inductor Current
Switched Current

Hard Turn-On Transition

Electric Measurement
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► Double Pulse Test (DPT)
Bridge Leg with Inductive Load

► Hard-Switching
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► Double Pulse Test (DPT)
Bridge Leg with Inductive Load

► Hard-Switching

Switched Voltage
Inductor Current
Switched Current

► Energy Losses
Etot = Eon + Eoff where Eon >> Eoff

Electric Measurement
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► Double Pulse Test (DPT)
Bridge Leg with Inductive Load

► Energy Losses
Eon, Eoff > 0
Etot = Eon + Eoff

► Hard-Switching - Accuracy

► DPT

Electric Measurement - Overview
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► Double Pulse Test (DPT)
Bridge Leg with Inductive Load

► Energy Losses
Eon, Eoff > 0
Etot = Eon + Eoff

► Hard-Switching - Accuracy

► DPT

Worst Case ±5% and ±5%

 ±5% of Etot

Electric Measurement - Overview
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► Double Pulse Test (DPT)
Bridge Leg with Inductive Load

► Energy Losses

Eon < 0
Eoff > 0
Etot = -|Eon| + Eoff

► Soft-Switching - Accuracy

|Eon| = 90% Eoff

Electric Measurement - Overview
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Electric Measurement - Overview
► Double Pulse Test (DPT)
Bridge Leg with Inductive Load

► Energy Losses

Eon < 0
Eoff > 0
Etot = -|Eon| + Eoff

► Soft-Switching - Accuracy

Worst Case 1: -5% and +5%

 +100% of Etot 2x Losses
|Eon| = 90% Eoff

Worst Case 2: +5% and -5%

 -100% of Etot No Losses
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► Oscillation
Boundaries of Power Integration
Etot ±94.7% - Eoff ±12.7% 

► Voltage – Current Probes Skew
Etot ±40% - 2ns Skew 

► Others
• Current and Voltage Offset
• Current and Voltage Amplitude
• Limited Bandwidth
• Ultra-Fast Switching (SiC, GaN)

Electric Measurement - Error
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► Oscillation
Boundaries of Power Integration
Etot ±94.7% - Eoff ±12.7% 

► Voltage – Current Probes Skew
Etot ±40% - 2ns Skew 

► Accurate Calorimetric
Method for Ultra-Fast
Semiconductors

Electric Measurement - Error

► Others
• Current and Voltage Offset
• Current and Voltage Amplitude
• Limited Bandwidth
• Ultra-Fast Switching (SiC, GaN)



21/52

Accurate
Calorimetric Method Air Flow Temperature Drop

Inductor in the Box
Bridge Leg in the Box
Precise Conduction Loss Estimation
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Accurate
Calorimetric Method Air Flow Temperature Drop

Inductor in the Box
Bridge Leg in the Box
Precise Conduction Loss Estimation
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► Improved DPT Method

Air Flow Temperature Drop
► Full-Bridge Configuration
Hard and Soft-Switching Operation

► Thermally Isolated DUT
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► Loss Measurement
• Ploss = k1 (Ths - Tair,in) Thermal Resistance
• Ploss = k2 (Tair,out - Tair,in) Temperature Drop
• Ploss = k3 (Tair,out - Tair,in) V Air Enthalpy Increase

Ploss = Psemi,th = Pcond + Psw

Air Flow Temperature Drop

► Measurement Setup
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► Thermal Model

Air Flow Temperature Drop
► Air Flow Model
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Accurate
Calorimetric Method Air Flow Temperature Drop

Inductor in the Box
Bridge Leg in the Box
Precise Conduction Loss Estimation
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► Continuous TCM Operation
Soft-Switching Bridge Leg Psemi

Output Inductor Pind,th

DC-Source Pin

Pin – Pind,th = Psemi

Inductor in the Box

► Thermal Measurement

Pind,th = Rth,box(Tbox - Tamb)
600V 65mΩ GaN
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► Continuous TCM Operation
Soft-Switching Bridge Leg Psemi

Output Inductor Pind,th

DC-Source Pin

Pin – Pind,th = Psemi + Pext

Inductor in the Box

► Thermal Measurement

Pind,th = Rth,box(Tbox - Tamb) @ Steady-State 600V 65mΩ GaN
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Accurate
Calorimetric Method Air Flow Temperature Drop

Inductor in the Box
Bridge Leg in the Box
Precise Conduction Loss Estimation
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Bridge Leg in the Box

► Thermal Measurement

Psemi,th = Rth,box(Tbox - Tamb)

► Continuous TCM Operation
Soft-Switching Bridge Leg Psemi,th

Output Inductor Pind

DC-Source Pin

Psemi,th = Psw + Pcond
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Bridge Leg in the Box
► Low-Voltage Setup

► Measured Waveform

► IMS
Insulated
Metal
Substrate

[3]

► Continuous TCM Operation
Soft-Switching Bridge Leg Psemi,th

Output Inductor Pind

DC-Source Pin

Psemi,th = Psw + Pcond
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Bridge Leg in the Box
► Low-Voltage Setup

► Measured Waveform

► IMS
Insulated
Metal
Substrate

► Continuous TCM Operation
Soft-Switching Bridge Leg Psemi,th

Output Inductor Pind

DC-Source Pin

Psemi,th = Psw + Pcond
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Bridge Leg in the Box
► Thermal System Analysis
IMS Board + Heat-Sink + Box

► IMS
Insulated
Metal
Substrate

1st Hypothesis: Symmetry

2nd Hypothesis: Slowest Time Constant

► Low-Voltage Setup
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Bridge Leg in the Box
► Thermal System Calibration
Simplified: Slowest Time Constant

► Transient vs. Steady-State
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Bridge Leg in the Box
► Thermal System Calibration
Simplified: Slowest Time Constant

► Transient vs. Steady-State
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Bridge Leg in the Box
► Thermal System Calibration
Simplified: Slowest Time Constant

► DC-Calibration Setup

► Transient vs. Steady-State
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Bridge Leg in the Box
► Soft-Switching Loss Measurement
≈60mΩ 600V/650V/900V GaN, SiC and Si MOSFETs

Esw per Switch and per Switching Period

► Si vs. SiC – GaN

• Gate-Driver and Resistance
• Parasitic Capacitance
• Power-Loop Inductance
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Bridge Leg in the Box
► Medium-Voltage Setup

30A 10kV SiC MOSFET

[2]
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Accurate
Calorimetric Method Air Flow Temperature Drop

Inductor in the Box
Bridge Leg in the Box
Precise Conduction Loss Subtraction
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► Conduction Loss Subtraction
Psemi - Pcond = Psw

Sratio = Psw/Ploss

e.g. @ 70A 600VDC

• Sratio = 38.7% (a)
Psw ±38.5%

• Sratio = 81.0% (b)
Psw ±13.3%

Maximize Sratio
in each operating point

Conduction Loss - Accuracy

> 70% > 60%



41/52

► Accurate Calorimetric Method
• Air Flow Temperature Drop
• Inductor in the Box 
• Bridge Leg in the Box

Conduction Loss - Estimation

Psemi,th – Pcond = Psw

► Pcond = Rds,on Isw
2

Rds,on = rds,on(t, T, isw, fsw) Isw = isw(t)

Hardware Accuracy

Datasheet Curve ++ --

DC-Calibration + +

3rd Switch Method -- +

Vds,on Measurement - ++

► Rds,on Evaluation ► DC-Calibration vcal-ical
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3rd Switch Method
► Low-Voltage Setup
2x Conduction Loss

► Medium-Voltage Setup

Improved
Modulation
Scheme

M1

M2

Pm2 = Psw + 2 Pcond

Pm2 – Pm1 = Pcond

2 Pm1 – Pm2 = Psw

► PT3 ≠ PT1, PT2
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Vds,on Measurement
► Dynamic Range vs. Accuracy
Example: 60mΩ - 20AFS

Vds,on 1.20VFS
Accuracy ±5% ±60mV
VDC 600V

► De-Saturation Circuit
±60mV

600V

• Connected in Parallel to Low-Side MOSFET
• T2 off: Tm Isolates the Measurement
• T2 on: vT2,m = vT2 ( ≈5mV )

Response Time: 20ns

vT2
vT2,m

Tm
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Vds,on Measurement
► Dynamic Range vs. Accuracy
Example: 60mΩ - 20AFS

Vds,on 1.20VFS
Accuracy ±5% ±60mV
VDC 600V

► De-Saturation Circuit

► Measurement Results

► Accurate Rds,on Measurement 

• Connected in Parallel to Low-Side MOSFET
• T2 off: Tm Isolates the Measurement
• T2 on: vT2,m = vT2 ( ≈5mV )

Response Time: 20ns
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Outline

► Impact of Switching Loss

► Conventional Measurement
► Accurate Calorimetric Measurement

► Conclusion - Outlook



46/52

Summary
► Conclusion
Conventional Electric Switching Loss Measurement are not enough for:
• Ultra-Fast Switching Semiconductors
• Soft-Switching Operation

Accurate Calorimetric Switching Loss Measurement Methods are proposed

High Accuracy Calorimetric Methods can be set up but:
• Good knowledge of the Thermal Setup must be acquired
• Sratio must be kept as high as possible (e.g. fsw, duty-cycle, …)
• Conduction Losses must be accurately estimated

► Outlook
• Analyse the Soft-Switching Loss Mechanisms and Dependencies
• Validate Accuracy Estimation
• Extend the Measurements to Other Devices
• Validate Measurement Results in a Power-Converter Setup
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