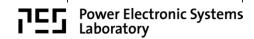


Core Loss Modeling of Inductive Components

- Effects with Considerable Impact on Core Losses -

Jonas Mühlethaler and Johann W. Kolar

Power Electronic Systems Laboratory, ETH Zurich

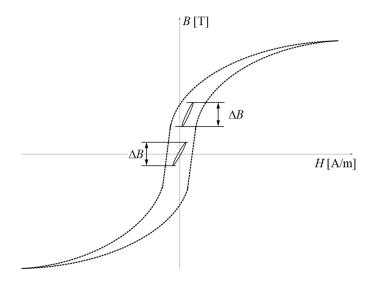


Agenda

- Core Losses under DC Bias Condition
- Relaxation Effects in Magnetic Materials
- Losses in Gapped Tape Wound Cores

Core Losses under DC Bias Condition Motivation

BH Loop



iGSE [5]

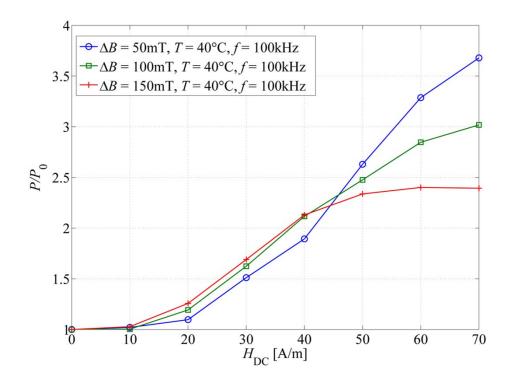
$$P_{v} = \frac{1}{T} \int_{0}^{T} k_{i} \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} \left(\Delta B \right)^{\beta - \alpha} \mathrm{d}t$$

According to the iGSE core losses should be the same for both loops, but ...

Core Losses under DC Bias Condition Measurement Results

Results

Ferrite EPCOS N87

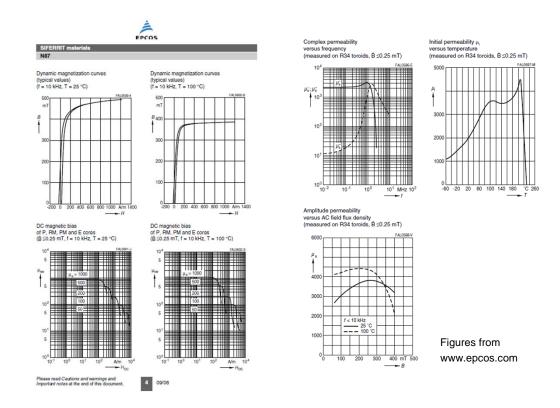


... the losses increase with an increase of H_{DC} !

Core Losses under DC Bias Condition

Model Derivation (1): Motivation

Copy from Data Sheet EPCOS N87

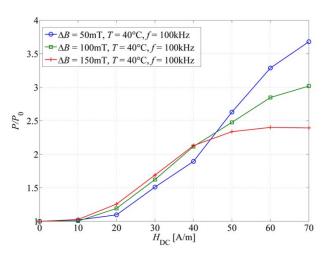


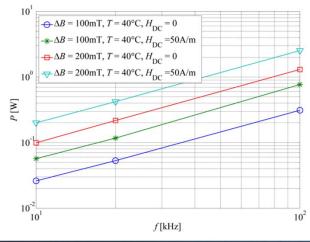
How could the effect of a DC bias be described in a data sheet?

Idea: Steinmetz parameters could be published as a function of the premagnetization $H_{\rm DC}$

Core Losses under DC Bias Condition Model Derivation (2)

Measurement Results (symmetric triangular flux waveforms)





iGSE

$$P_{v} = \frac{1}{T} \int_{0}^{T} k_{i} \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} \left(\Delta B \right)^{\beta - \alpha} \mathrm{d}t$$

$$= k_i (2f)^{\alpha} \Delta B^{\beta}$$
 (for symmetric triangular flux waveforms)

 $k_{\rm i}$ depends on $H_{\rm DC}$

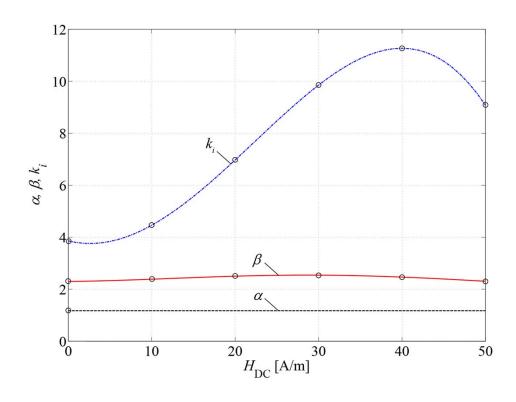
 β depends on H_{DC} .

$$\frac{P}{P_0} = f(\Delta B)$$

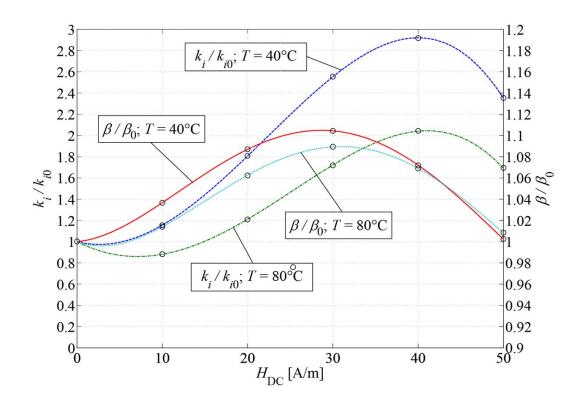
 α is independent of H_{DC}

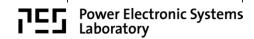
Core Losses under DC Bias Condition

Model Derivation (3): Steinmetz Parameters as a Function of $H_{\rm DC}$



Core Losses under DC Bias Condition The Steinmetz Premagnetization Graph (SPG) [1]



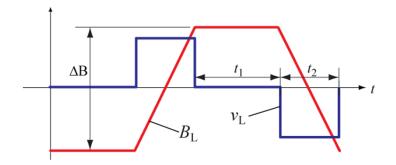


Agenda

- Core Losses under DC Bias Conditions
- Relaxation Effects in Magnetic Materials
- Losses in Gapped Tape Wound Cores

Relaxation effect Motivation (1)

Waveform



iGSE [5]

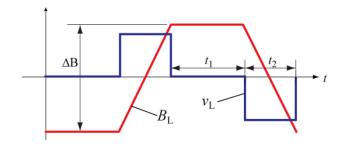
$$P_{v} = \frac{1}{T} \int_{0}^{T} k_{i} \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} \left(\Delta B \right)^{\beta - \alpha} \mathrm{d}t$$

Conclusion

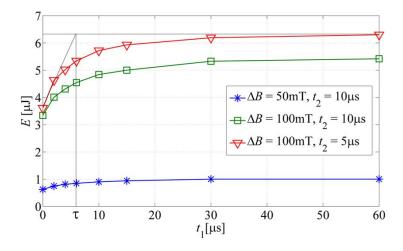
No losses occur in the phase of constant flux! True?

Relaxation effect Motivation (2)

Waveform



Results

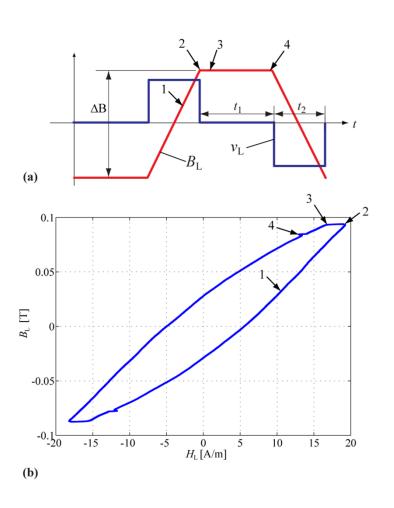


Conclusion

Losses occur in the phase of constant flux!



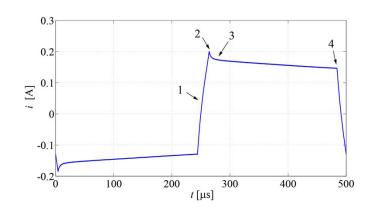
Relaxation effect Theory



Relaxation Losses

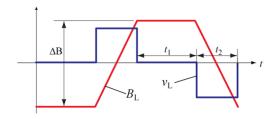
- Rate-dependent BH Loop.
- Reestablishment of a thermal equilibrium is governed by relaxation processes.
- Restricted domain wall motion.

Current Waveform

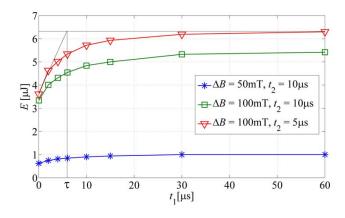


Relaxation effect Model Derivation 1 (1)

Waveform



Loss Energy per Cycle



Derivation (1)

Relaxation loss energy can be described with

$$E = \Delta E \left(1 - e^{-\frac{t_1}{\tau}} \right)$$

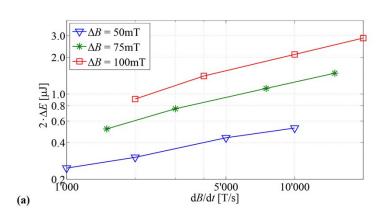
 τ is independent of operating point.

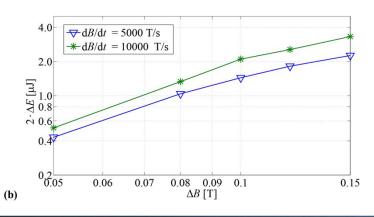
How to determine ΔE ?



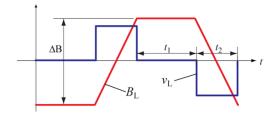
Relaxation effect Model Derivation 1 (2)

∆E – Measurements



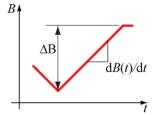


Waveform



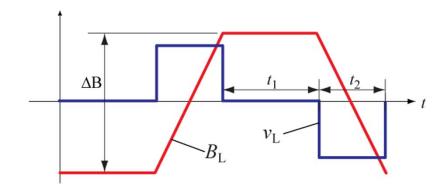
Conclusion

→ ∆E follows a power function!



$$\Delta E = k_{\rm r} \left| \frac{\mathrm{d}}{\mathrm{d}t} B(t) \right|^{\alpha_{\rm r}} (\Delta B)^{\beta_{\rm r}}$$

Relaxation effect Model Derivation 1 (3)



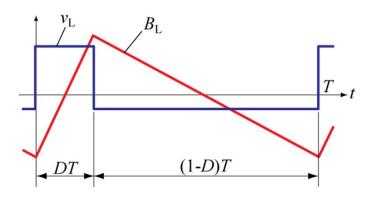
Model Part 1

$$P_{v} = \frac{1}{T} \int_{0}^{T} k_{i} \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} (\Delta B)^{\beta - \alpha} \, \mathrm{d}t + \sum_{l=1}^{n} P_{rl}$$

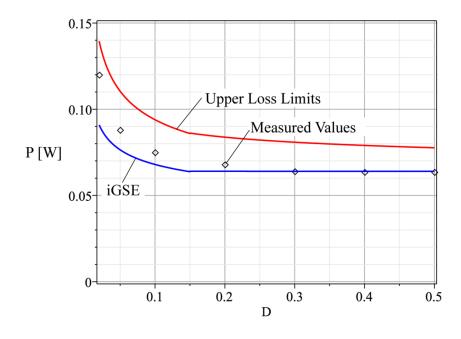
$$P_{\rm rl} = \frac{1}{T} k_{\rm r} \left| \frac{\rm d}{{\rm d}t} B(t) \right|^{\alpha_{\rm r}} \left(\Delta B \right)^{\beta_{\rm r}} \left(1 - {\rm e}^{-\frac{t_1}{\tau}} \right)$$

Relaxation effect Model Derivation 2 (1)

Waveform



Power Loss

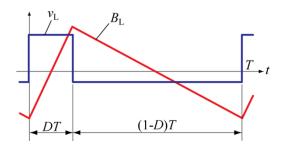


Explanation

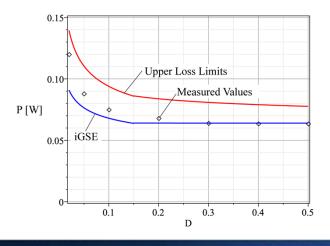
- 1) For values of *D* close to 0.5 the iGSE is expected to be accurate.
- 2) For values of *D* close to 0 or close to 1 a loss underestimation is expected when calculating losses with iGSE (no relaxation losses included).
- 3) Hence, adding the relaxation term leads to the upper loss limit, while the iGSE represents the lower loss limit.
- 4) Losses are expected to be in between the two limits, as has been confirmed with measurements.

Relaxation effect Model Derivation 2 (2)

Waveform



Power Loss



Model Adaption

$$P_{v} = \frac{1}{T} \int_{0}^{T} k_{i} \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} (\Delta B)^{\beta - \alpha} \, \mathrm{d}t + \sum_{l=1}^{n} \mathbf{Q}_{rl} P_{rl}$$

 $Q_{r/}$ should be 1 for D=0

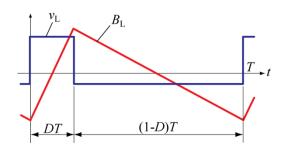
 Q_{rl} should be 0 for D = 0.5

Q_{r/} should be such that calculation fits a triangular waveform measurement.

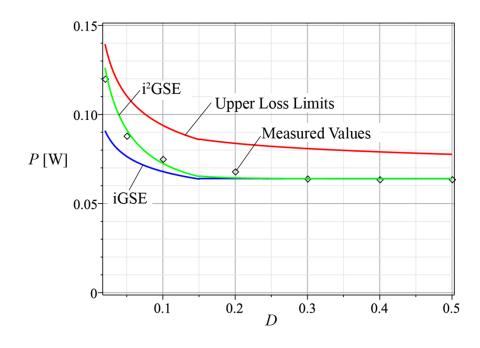
$$Q_{\mathrm{r}l} = \mathrm{e}^{-q_{\mathrm{r}} \left| \frac{\mathrm{d}B(t+)/\mathrm{d}t}{\mathrm{d}B(t-)/\mathrm{d}t} \right|} \left(= \mathrm{e}^{-q_{\mathrm{r}} \frac{D}{1-D}} \right)$$

Relaxation effect Model Derivation 2 (3)

Waveform

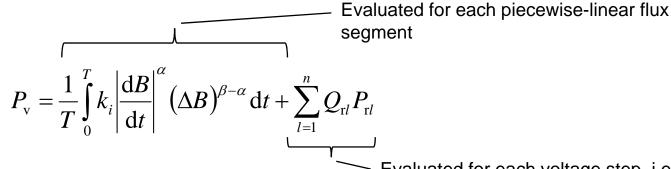


Power Loss



Relaxation effect New Core Loss Model

The improved-improved Generalized Steinmetz Equation (i²GSE)



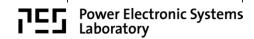
with

$$P_{\rm rl} = \frac{1}{T} k_{\rm r} \left| \frac{\mathrm{d}}{\mathrm{d}t} B(t) \right|^{\alpha_{\rm r}} (\Delta B)^{\beta_{\rm r}} \left(1 - \mathrm{e}^{-\frac{t_1}{\tau}} \right)$$

Evaluated for each voltage step, i.e. for each corner point in a piecewise-linear flux waveform.

and

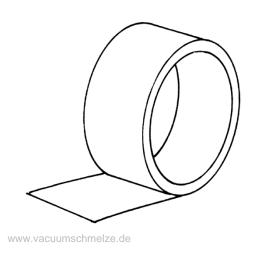
$$Q_{\rm rl} = e^{-q_{\rm r} \left| \frac{\mathrm{d}B(t+)/\mathrm{d}t}{\mathrm{d}B(t-)/\mathrm{d}t} \right|}$$

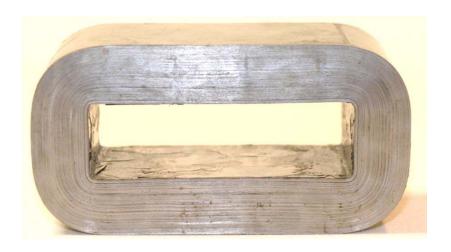


Agenda

- Core Losses under DC Bias Conditions
- Relaxation Effects in Magnetic Materials
- Losses in Gapped Tape Wound Cores

Losses in Gapped Tape Wound Cores Tape Wound Cores





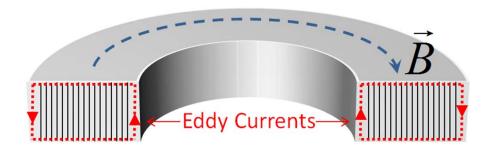
Thin ribbons (approx. 20 μ m) Wound as toroid or as double C core. Amorphous or nanocrystalline materials.

Losses in gapped tape wound cores higher than expected!

Cause 1: Interlamination Short Circuits

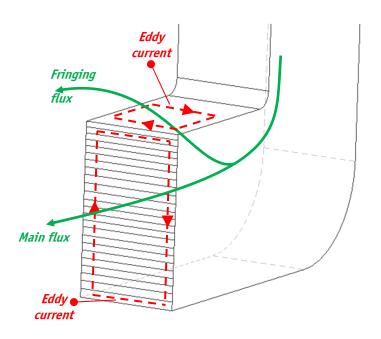
Machining process

Surface short circuits introduced by machining (particular a problem in in-house production).



After treatment may reduce this effect. At ETH, a core was put in an 40% ferric chloride FeCl₃ solution after cutting, which substantially (more than 50%) decreased the core losses.

Cause 2: Orthogonal Flux Lines

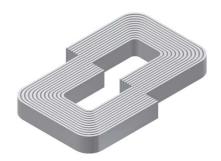


A flux orthogonal to the ribbons leads to very high eddy current losses!

Orthogonal Flux Lines – Illustrative Experiment

An experiment that illustrates well the loss increase due to an orthogonal flux is given here.

Displacements

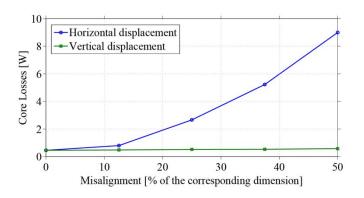


Horizontal Displacement



Vertical Displacement

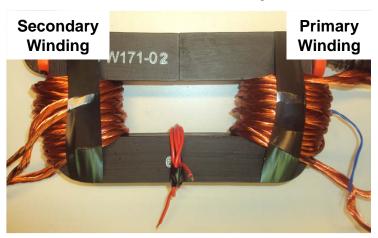
Core Loss Results

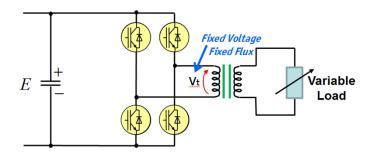


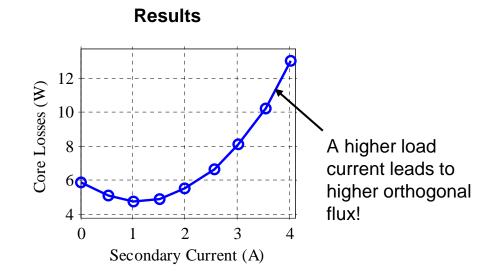
Orthogonal Flux Lines – Transformer Leakage Flux

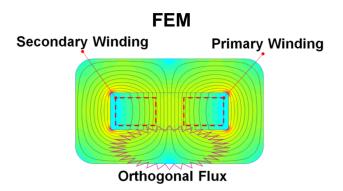
Core loss increase due to leakage flux in transformers.

Measurement Set Up









Orthogonal Flux Lines – Air Gap Length

In [10] a core loss increase with increasing air gap length has been observed.

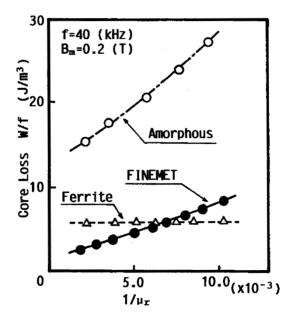


Fig.1 Core loss per cycle W/f in FINEMET, Fe-based amorphous, and ferrite cut cores as a function of inverse of the effective permeability μ_{Γ} .

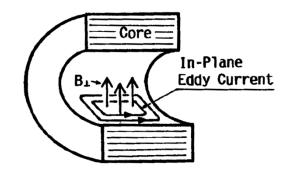


Fig.2 Schematic representation of in-plane eddy current generated by leakage flux normal to ribbon surfaces.

Figures from [10]

[10] H. Fukunaga, T. Eguchi, K. Koga, Y. Ohta, and H. Kakehashi, "High Performance Cut Cores Prepared From Crystallized Fe-Based Amorphous Ribbon", in IEEE Transactions on Magnetics, vol. 26, no. 5, 1990.

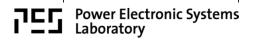
Conclusion & Outlook

The following effects have been discussed:

Core Losses under DC Bias Condition [1]

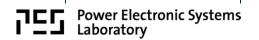
Relaxation Effects in Magnetic Materials [2]

Losses of Gapped Tape Wound Cores [3,4]



Thank you!

Do you have any questions?



References

- [1] J. Mühlethaler, J. Biela, J. W. Kolar, A. Ecklebe, "Core Losses Under the DC Bias Condition Based on Steinmetz Parameters", IEEE Transactions on Power Electronics, Vol. 27, No. 2, February 2012.
- [2] J. Mühlethaler, J. Biela, J. W. Kolar, A. Ecklebe, "Improved Core-Loss Calculation for Magnetic Components Employed in Power Electronic Systems", IEEE Transactions on Power Electronics, Vol. 27, No. 2, February 2012.
- [3] B. Cougo, A. Tüysüz, J. Mühlethaler, J.W. Kolar, "Increase of Tape Wound Core Losses Due to Interlamination Short Circuits and Orthogonal Flux Components", in Proc. of the IECON, Melbourne, 2011.
- [4] H. Fukunaga, T. Eguchi, K. Koga, Y. Ohta, and H. Kakehashi, "High Performance Cut Cores Prepared From Crystallized Fe-Based Amorphous Ribbon", in IEEE Transactions on Magnetics, vol. 26, no. 5, 1990.
- [5] K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters", in Proc. of IEEE Workshop on Computers in Power Electronics, pages 36–41, 2002.
- [6] I. Villar, U. Viscarret, I. Etxeberria-Otadui, A. Rufer, "Global Loss Evaluation Methods for Nonsinusoidally Fed Medium-Frequency Power Transformers", IEEE Transactions on Industrial Electronics, vol. 56, pages 4132-4140, 2009.