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State-of-the-Art
Future Requirements

3-Φ Variable Speed Drive 
Inverter Systems



► VSD State-of-the-Art

● High Performance @ High Level of Complexity / High Costs (!)  
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■ Mains Interface / 3-Φ PWM Inverter / Motor  — All Separated 
 Large Installation Space                  / $$$
 Complicated / Expert Installation   / $$$

Source: ABB

Source:  FLUKE

■ Conducted EMI / Radiated EMI / Bearing Currents / Reflections on Long Motor Cables
 Shielded Motor Cables                      / $$$
 Inverter Output Filters (Add. Vol.) / $$$



■ “Non-Expert” Install. / Low-Cost Motors  “Sinus-Inverter” OR Integrated Inv.
■ Wide Applicability / Wide Voltage & Speed Range   Matching of Supply & Motor Voltage
■ High Availability

● Single-Stage Energy Conversion   No Add. Converter for Voltage Adaption
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Source: magazine.fev.com

► Future Requirements (1) 



► Future Requirements (2)  
■ Red. Inverter Volume / Weight        Matching of Low High-Speed Motor Volume   
■ Lower Cooling Requirement             Low Inverter Losses  &  Low HF Motor Losses
■ High Speed Machines  High Output Frequency Range  

 Main “Enablers”  — SiC/GaN Power Semiconductors  & Adv. Inverter Topologies 
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Source:



WBG Semiconductors
Advanced Inverter Topologies

Enabling Technologies & Challenges

Idea: F.C. Lee

EDGE 1 EDGE 2



■ Very Low On-State Resistance    Low (Partial Load) Conduction Losses 
■ Very Low Switching Losses   High Switching Frequencies
■ Small Chip Area       Compact Realization  

► SiC/GaN

● Challenges     Packaging / Thermal Management / Gate Drive / PCB Layout
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● Challenges     Motor Insul. Stress (Volt. Peaks  Insul. Breakdown  Partial Discharge)
 Reflections (Impedance Mismatch of long Cable & Motor)
 Bearing Currents   (Motor Shaft Volt.  Elect. Discharge in Bearing)
 EMI  (Conducted & Radiated)

■ Extremely High dv/dt (Si-IGBT: dv/dt = 2…6kV/us vs. SiC-MOSFETs: dv/dt = 20…60kV/us)
■ Very Low Switching Losses 
■ High Switching Frequencies
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► Si vs. SiC

Source:  M. Bakran / ECPE 2019

EDGE 2

EDGE 1



Full-Sinewave Filtering
Inverter Output Filters



Full-Sinewave Filtering 



● Factor 10 Lower On/Off Delay & Sw. Times Comp. to IGBTs
● Extremely Low Sw. Losses   Inverter Sw. Frequency  fS= 100kHz
● Sinewave LC Output Filter   Corner Frequency  fC= 34kHz (fS= 100kHz)

■ Transphorm 650V GaN HEMT/30V Si-MOSFET Cascode Switching Devices 
■ Measurement of Sw. Properties   Turn-On/Off  10A/400V

► 3-Φ 650V GaN Inverter System (1) Source: 
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 2% Higher Efficiency of GaN System Despite LC-Filter (Saving in Motor Losses) !  

■ Comparison of GaN Inverter with LC-Filter to Si-IGBT System (No Filter, fS=15kHz)
■ Measurement of Inverter Stage &  Overall Drive Losses @ 60Hz
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► 3-Φ 650V GaN Inverter System (2) Source: 



● Small Size (0.4 kW  @ 70 x 70x 170mm)
● Massive Saving in Cabling Effort / Simplified Installation  

■ Sigma-7F Servo Drive — Integration of Inverter (TO-220 GaN) Into Motor Housing
■ Distributed DC-Link System (“Converter” generates DC)  
■ 0.1 – 0.4kW  / 270…324V Nominal DC Link Voltage

Inverter
Stage

DC Power

Network
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► 3-Φ 650V GaN Inverter System (3) Source: 

https://powerpulse.net/wp-content/uploads/2017/09/GaN-FETs-enable-Reimagining-Servos-through-Redesigned-Power-Electronics-diagram.jpg
https://powerpulse.net/wp-content/uploads/2017/09/GaN-FETs-enable-Reimagining-Servos-through-Redesigned-Power-Electronics-diagram.jpg


VSI & DC/DC Front-End
Phase-Modular Buck-Boost Inverter

CSI & DC/DC Front-End

Buck-Boost Inverter



 Analyze Coupling of the Control of Both Converter Stages  “Synergetic Control”

► Boost Converter DC-Link Voltage Adaption
■ Inverter-Integr. DC/DC Boost Conv.  Higher DC-Link Voltage / Lower Motor Current
■ Access to Motor Star Point  &  Specific Motor Design Required
■ No Add. Components 

■ Explicit Front-End DC/DC Boost Stage 

Source: J. Pforr et al. / 2009 

Source: R.W. Erickson et al. / 1986 
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● Preferable for Low-Dynamics Drive Systems 





■ DC/DC Boost Converter Used for 6-Pulse Shaping of DC-Link Voltage
■ 2 (!) Inverter Phases Clamped (1/3 PWM)  Low Switching Losses / High Efficiency
■ Conv. PWM Inverter / Clamped Boost-Stage Operation @ Low Speed

► “Synergetic Control” of Boost-Buck Inverter (1)
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■ Control Structure and Simulation Results 

● Seamless Transition — Clamped Boost-Stage  Temporary  Full Boost-Stage Operation 
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► “Synergetic Control” of Boost-Buck Inverter (2)



 Comparison to Conv. UDC=const. Operation (PWM of 2/3 Phases or 3/3 Phases)  

■ Experimental  Verification 

Ub = 40…60V
P   = 500W
fS = 300kHz (200V EPC GaN, 2 per Switch)
fO = 5kHz (max.)
M   = 0…2 (for Ub=40V)

185cm3 / 11.3in3
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► “Synergetic Control” of Boost-Buck Inverter (3)



— Const. DC-Link Voltage & PWM of 3/3 Phases or 2/3 Phases
— Synergetic Control  =  PWM of 1/3 Phases  Substantial Loss Saving (!)

3/3

1/3

2/3
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► “Synergetic Control” of Boost-Buck Inverter (4)
■ Experimental  Verification 



Boost-Buck Modules
Buck-Boost Modules

Phase-Modular Topologies 



■ Realization of 3-Φ Inverter Using 3 DC/DC Converter (Phase) Modules ─ S. Cuk/1982
■ Wide Voltage Conv. Range   Battery or Fuel-Cell Supply  & Adaption to Motor Voltage
■ Continuous Output Voltage  Explicit or Integrated LC Output Filter

 Preference for Low Number of Ind. Components  Buck-Boost Concept ─ “Y-Inverter”

► Phase-Modular Boost-Buck / Buck-Boost Inverter 
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■ Project Scope  Hardware Demonstrator  /  Exp. Analysis  /  Comparative Evaluation

● 3-Φ Continuous Output / Low EMI !                   - No Shielded Cables / No Insul. Stress
● Buck-Boost Operation / Wide Input  &/or Output Range  - Industrial Drive
● Standard Bridge Legs / Building Blocks                             - 1.2kV SiC MOSFETs
● High Power Density

Y-Inverter
Lighthouse
Project



16/38



● Operating Behavior

► Y-Inverter (1)

■ uam < Uin  Buck Operation
■ uam > Uin  Boost Operation 
■ Output Voltage Generation Referenced to DC Minus

17/38



■ “Democratic Control”  Seamless Transition Between Buck & Boost Operation

● Control Structure
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► Y-Inverter (2)



■ Dimensions   160 x 110 x 42 mm3 (15kW/dm3, 245W/in3)

Control 
Board

► Y-Inverter Prototype 

Main 
Inductors

3Φ Output

● DC Voltage Range  400…750VDC
● Max. Input Current ± 15A
● Output Voltage        0…230Vrms (Phase)
● Output Frequency       0…500Hz
● Sw. Frequency            100kHz
● 3x SiC (75mΩ)/1200V per Switch 
● IMS Carrying Buck/Boost-Stage Semicond. & Comm. Caps & 2nd Filter Ind.  

Output Filter
Inductors

DC Input
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100V/div
100V/div

6A/div
6A/div

■ Dynamic Behavior V-f Control and Load-Step

100V/div
uDC

UDC=   400V
UAC=   400Vrms (Motor Line-to-Line Voltage) 
fO =   50Hz
fS =   100kHz / DPWM
P  =   6.5kW

ucua ub

uDC

ia

iLa

ua
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● Transient Operation

► Experimental Results - Dynamic Behavior



► Experimental Results - Conducted EMI
● Measurements of the Cond. EMI Noise on the AC-Side (QP, with AC-LISN) 
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 Low Add. EMI Filter Volume    — 74cm3 for Each Filter (incl. Radiated EMI Filter) 
 Total Power Density Reduces  — 15kW/dm3 (740cm3)  12kW/dm3 (890cm3) 
 Conducted EMI with Unshielded Motor Cable Fulfilled



► Experimental Results - Radiated EMI
● Y-Inverter Placed in Metallic Enclosure    Emulate Housing, but UNshielded Cables (!)
● Measurement Setup  According IEC 61800-3
● Alternative Measurement Principle          Conducted CM-Current Instead of Radiation

 Already Noticeable Noise Floor
 HF-Emissions Well Below Equivalent EMI-Limit  Verification Using Antenna
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 Multi-Level Bridge-Leg Structure  for  Increase of Power Density @ Same Efficiency 

► Efficiency Measurements
● Dependency on Input Voltage  &  Output Power Level   

UDC=   400V / 600V
UAC=   230Vrms (Motor Phase-Voltage)
fS =   100kHz

23/38



Monolithic Bidir. GaN Switches
Synergetic Control 

DC/DC Buck Stage &
Current Source Inverter



► Current Source Inverter (CSI) Topologies

■ Phase Modular Concept   Y-Inverter (Buck-Stage / Current Link / Boost-Stage)  
■ 3-Φ Integrated Concept  Buck-Stage & Current DC Link Inverter

 Low Number of Ind. Components   &   Utilization of  Bidir. GaN Semicond. Technology 




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■ Basic Topology Proposed in 1984 (Ph.D. Thesis of K.D.T. Ngo/CPES) 
■ Monolithic Bidirectional 650V GaN e-FETs

 Factor 4 Improvement in Chip Area Comp. to Discrete Realization
 Also Beneficial for Matrix Converter Topologies or Back-to-Back Configurations

► 3-Φ Integrated Buck-Boost CSI  (1)

Source:
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● Conventional Control of  Inverter Stage   Switching of All 3 Phase Legs (3/3) 

■ Monolithic Bidir. GaN Switches Featuring 2 Gates / Full Controllability  
■ Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control

26/38



► 3-Φ Integrated Buck-Boost CSI  (2)
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



● Conventional Control of  Inverter Stage   Rel. High CSI-Stage Sw. Losses 

■ Monolithic Bidir. GaN Switches Featuring 2 Gates / Full Controllability  
■ Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control

► 3-Φ Integrated Buck-Boost CSI  (3)



■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck Stage   Allows Clamping of a CSI-Phase 



28/38

● Switching of Only 2 of 3 Phase Legs  Significant Red. of Sw. Losses (≈ -86% for R-Load) 

► 3-Φ Integrated Buck-Boost CSI  (4)




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

● Switching of Only 2 of 3 Phase Legs  Significant Red. of Sw. Losses (≈ -86% for R-Load) 

■ “Synergetic” Control of Buck-Stage & CSI Stage 
■ 6-Pulse-Shaping of DC Current by Buck Stage   Allows Clamping of a CSI-Phase 

► 3-Φ Integrated Buck-Boost CSI  (5)



Quasi-2-Level FC Inverter
Integrated Filter Power Module

Further Concepts



Quasi-2L/3L
Flying Capacitor Inverter



► Quasi-2L & Quasi-3L Inverters (1)
■ Operation of N-Level Topology in 2-Level or 3-Level Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

Q3L  Q2L  

- Schweizer (2017)

● Reduced Average dv/dt Lower EMI / Lower Reflection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/Low RDS(on)/Low $ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  
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■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

- Schweizer (2017)

● Reduced Average dv/dt Lower EMI / Reflection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/RDS(on)/$ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

SMD 
150V Si-MOSFETs

3.3kW @ 230Vrms /50Hz
Equiv. fS= 48kHz

3.5kW/dm3

Eff. ≈ 99%
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► Quasi-2L & Quasi-3L Inverters (2)



- Schweizer (2017)

● Reduced Average dv/dt Lower EMI / Reflection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/RDS(on)/$ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

EMI Filter

3.5kW/dm3

Eff. ≈ 99%

3.3kW @ 230Vrms /50Hz
Equiv. fS= 48kHz
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■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

► Quasi-2L & Quasi-3L Inverters (3)



- Schweizer (2017)

● Reduced Average dv/dt Lower EMI / Reflection Overvoltages
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/RDS(on)/$ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

Operation @ 3.2kW

— Conv. Output Voltage 
— Sw. Stage Output Voltage
— Flying Cap. (FC) Voltage
— Q-FC Voltage (Uncntrl.)

— Output Current   
— Conv. Side Current

33/38

■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

► Quasi-2L & Quasi-3L Inverters (4)



650V GaN E-HEMT Technology
fS,eff= 4.8MHz
fout = 100kHz

Ultra-Compact
Integrated Filter

Power Module 



● Design for Max. Output Frequency of  fout = 100kHz (!) @ Full-Scale Voltage Swing 

■ Minimization of Filter Volume by Series & Parallel Interleaving & Extreme Sw. Frequency 
■ Selection of  M=3 / N=3  Considering Efficiency / Filter Volume Trade-Off 
■ 650V GaN E-HEMT Technology
■ UDC=800V,  P=10kW,  ∆uout,pp= 1%,  fS,eff= 4.8MHz

► Integrated Filter GaN Half-Bridge Module (1) 

fS,eff= N ∙ (M-1) ∙ fS

VL < 15%
IC <30%
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N ∙ Lfilt=3.3uH
Cfilt=90nF



● Operation @ fout=100kHz  (fS,eff= 4.8MHz)  
● 95% calc. Efficiency

■ 10kW Demonstrator System 

— 650V GaN Power Semiconductors
— Volume of ≈180cm3 (incl. Control etc.)
— H2O Cooling Through Baseplate

≈ 50kW/dm3
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► Integrated Filter GaN Half-Bridge Module (2) 



Motor-Integrated 
Modular Inverter



► Motor-Integrated Modular Inverter
■ Machine/Inverter Fault-Tolerant VSD
■ Motor-Integr. Low-Voltage Inverter Modules
■ Very-High Power Density / Efficiency
■ Supply of 3-Φ Winding Sets / Low C Buffer Cap.

■ Rated Power         45kW  / fout = 2kHz
■ DC-Link Voltage    1 kV 

 Evaluate Machine Concept (PMSM vs. SRM etc.) / Wdg Topologies /  Filter Requ. / etc.
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►Motor-Integrated Inverter Demonstrator

 Main Challenge  — Thermal Coupling/Decoupling of Motor & Inverter

■ Rated Power         9kW @ 3700rpm
■ DC-Link Voltage   650V…720V
■ 3-Φ Power Cells   5+1
■ Outer Diameter    220mm

— Axial Stator Mount
— 200V GaN e-FETs
— Low-Capacitance DC-Links  
— 45mm x 58mm / Cell
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Conclusions



■ System Level  Integration of Storage, Distributed DC Bus Systems, etc.

► Conclusions

■ Enabling Technologies 

─ SiC / GaN
─ Adv. (Multi-Level) Topologies  incl. PFC Rectifier
─ “Synergetic” Control
─ Monolithic Bidirectional GaN
─ Intelligent Power Modules
─ Integration of Switch / Gate Drive / Sensing / Monitoring 
─ Adv. Modeling / Simulation / Optimization 

■ Future Need for Single-Edged „SWISS Knife“-Type Systems feat. Multiple Tools

─ Wide Input / Output Voltage Range
─ Continuous / Sinusoidal Output Voltage
─ Electromagnetically „Quiet“ - No Shielded Cables
─ On-Line Monitoring / Industry 4.0
─ “Plug & Play“ / Non-Expert Installation
─ SMART Motors

Source: 
UK Outdoor

Store
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Thank you!
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