

Ultra-High Bandwidth GaN-Based Class-D AC Power Amplifier with 4.8 MHz Switching Frequency

Pascal S. Niklaus, D. Bortis, J. W. Kolar niklaus@lem.ee.ethz.ch – www.pes.ee.ethz.ch **Real-Time Simulation Workshop 2022** Karlsruher Institut für Technologie November 24th – 25th 2022

100 kHz Large-Signal Bandwidth GaN-Based 10 kVA Class-D Power Amplifier

Very High Power Density Converter Systems with Multi-MHz Switching Frequencies

Power Electronic Systems Laboratory

UHBPA: Applications + Specifications

- P-HIL → Three-phase Ultra-High Bandwidth Power Amplifier (UHBPA)
- Focus on single-phase module of DC/AC stage

▼ UHBPA Specifications

Parameter		Value
Peak Output Voltage per Phase	V _{out,pk}	$0 \dots 350 \mathrm{V}$
Output Frequency	fout	dc100 kHz
Output Power per Phase	Sout	0 10 kVA
DC Link Voltage	$V_{ m dc}$	$800\mathrm{V}$
Effective Switching Frequency	$f_{\rm sw,eff}$	4.8 MHz
System Efficiency (Nom. Op. Pt.)	η	95 %

→ Fast dynamics (100kHz) and high efficiency (95%) at nominal power of 10kW per phase

UHBPA: Linear vs. Switch-Mode

→ Switch-mode for higher efficiency → 100kHz BW needs \approx 5MHz sw. frequency

 \rightarrow Advanced topology to increase f_{sw} with minimal losses and to reduce ripple with minimal volume

Power Electronic Systems Laboratory

EHzürich

Advanced Circuit Topology

- Series & Parallel interleaving
- Multi-level switch-node voltage + very high effective switching frequency

 \rightarrow Find best combination of series (*M*) and parallel (*N*) interleaving

Optimal Design Selection

- Filter design space
 - $L_{\text{filt}} = 1.26 \,\mu\text{H}, C_{\text{filt}} = 99 \,\text{nF}$
- Nominal operating point
 - 230 V_{rms}, 10 kW, 100 kHz
- $70 \text{ m}\Omega$ / 600 V GaN HEMT

90

155 W

5

6

 \rightarrow Selection of M=3 / N=3 considering efficiency / filter volume / design complexity trade-off

10

9

8

Branches *N* o 2 o 2 o

#

2

2

Experimental Verification

- M=3 / N=3 hardware demonstrator $\rightarrow 25 \text{ kW/dm}^3$ power density, H₂O cooling
- Pot core branch inductor Arrangement 1 | Arrangement 2 $r_0 = 12.6 \,\mathrm{mm}$ as 103 Control $L_{\rm br}$ out DC Input Power Stage out Measurements AC Output H₂O Cooling Baseplate

OVE BMS 100 W/div 10 dBuV/s

 \rightarrow 100 kHz sine operation with \approx 40 dB attenuation of 3rd and 5th harmonic

Auxiliary + Gate Drivers

Experimental Verification: Efficiency

- M=3 / N=3 hardware demonstrator $\rightarrow f_{sw,eff} = 4.8$ MHz
- Open-loop operation with $V_{out} = 230 V_{rms}$

→ $\eta = 95.8\%$ @ 100kHz, 10kW (nom. op. point)

 \rightarrow Losses dominated by (hard-) switching losses

High-Frequency DC-Coupled Current Measurement Sensors

Bandwidth Extension of Commercial Hall-Effect Current Sensors

LF + HF Sensor Combination

- Minimal error in the transition / combiner region
- Active combiner circuit

\rightarrow Find suitable HF sensors

Investigated HF Sensors

- Max. BW and minimal volume
- ▼ Isolated Inductive Voltage Sensing

▼ Current Transformer

Pickup Coils

→ Which sensor offers best performance?

17 mm

 \otimes

Experimental Verification

- All sensors tested in-circuit
 - ▼ Frequency Domain Switch-Node Voltage vsw / V ---- Current Probe Measurement iL / A — Proposed Sensor i_L / A — PUC B — HF Power Amplifier -CT — Rog. IVS IVS — PUC A — PUC C ---- LF Power Amplifier CT Conventional Rogowski Coil > 300 $\frac{V_{dc}}{2}$ 35kV/µs `40 kV/µs SW f_{Hall} Jsense / /Rog 10 12 +3dBurrent i_L / A 10 0 $\frac{0}{|\underline{G}_{tot}|} / dB$ -3dB 0.3 dB0.5 dB $T_{\rm iLpp} = 1/1.6 \,\rm MHz$ 750 -500 -250 0 250 500 750 -750 -500 -250 250 500 750 -750 -500 -250 0 250 500 750 0 Time / ns Time / ns Time / ns -20 10^{2} 10° HS Only PUC A PUC B PUC C > 300 -30 2 cur 0 45°.C7 14 12 $\angle \overline{G}_{ ext{tot}}$ -45 $^{\rm A}$ f45°, sense J45°.Hall i. -90 10^{2} 10^{3} 10^{5} 10^{7} 10^{4} 10^{6} >50MHz f/Hz-750 -500 -250 250 500 750 -750 -500 -250 250 500 750 -750 -500 -250 250 500 750 0 0 0 Time / ns Time / ns Time / ns
- \rightarrow 10MHz BW fulfilled with all sensors \rightarrow Accurate tracking of triangular current
- \rightarrow PUC C with highest BW and smallest form factor

Power Electronic Systems Laboratory

Time Domain

High Bandwidth Closed Loop Control Concepts

Output Voltage and Output Current Control

EHzürich

Closed-Loop Voltage Control Concept

- Cascaded current and voltage control
- v_{ref} , i_{load} and inductor voltage feedforward

→ Minimal loop delay crucial for ultra-fast control

EHzürich

Closed-Loop Current Control Concept

- Two-loop control structure
- *v*_L compensation (inner loop)
- *v*₁ feedforward

→ Minimal loop delay crucial for ultra-fast control

Conclusions / Summary

Test and verification of Power Electronic Systems

- Part of P-HIL test environment
- Topological evaluation
- Hardware demonstrator with 25 kW/dm³ power density
- 95.8% efficiency @ 230 V_{rms} , 10kW, 100kHz

- Hall sensor BW extension to >50 MHz
- Different HF sensors compared
- Superior CMRR
- Compact design
- → Several challenges related to very high switching frequency converters addressed

Power Electronic Systems Laboratory

Thank you!

Further Reading:

- P. S. Niklaus, J. W. Kolar, and D. Bortis, "100 kHz Large-Signal Bandwidth GaN-Based 10 kVA Class-D Power Amplifier with 4.8 MHz Switching Frequency," IEEE Transactions on Power Electronics, Vol. 38, No. 2, pp. 2307-2326, February 2023. DOI: <u>https://doi.org/10.1109/TPEL.2022.3213930</u>
- F. Krismer, V. Behrunani, P. S. Niklaus, and J. W. Kolar, "Optimized Cascaded Controller Design for a 10 kW / 100 kHz Large Signal Bandwidth AC Power Source," in *Proc. of the IEEE Energy Conversion Congress and Exposition (ECCE USA)*, Detroit, MI, USA, October 11-15, 2020 DOI: <u>https://doi.org/10.1109/ECCE44975.2020.9236149</u>
- P. S. Niklaus, D. Bortis, and J. W. Kolar, "Beyond 50 MHz Bandwidth Extension of Commercial DC-Current Measurement Sensors with Ultra-Compact PCB Integrated Pickup Coils," IEEE Transactions on Industry Applications, Vol. 58, No. 4, pp. 5026-5041, August 2022. DOI: <u>https://doi.org/10.1109/TIA.2022.3164865</u>

