ETH zürich

Measurement of Conducted EMI using a Three-Phase Active CM/DM Noise Separator

Pascal S. Niklaus, M. Antivachis, D. Bortis, J. W. Kolar Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch niklaus@lem.ee.ethz.ch

Motivation

- Switched-Mode Converters must comply with CISPR Standards for Conducted EMI
- Fundamental Component + Switching Harmonics / Noise → CM and DM

Motivation

- Switched-Mode Converters must comply with CISPR Standards for Conducted EMI
- Output Filter to reduce Switching Harmonics / Noise

Optimize for Minimum Volume, Cost, Losses, Weight, ...

Introduction: Measurement Setup

Motivation

- Standard Meas. Setup only gives Total Conducted EMI Noise from EUT
- **Total EMI Noise composed of CM and DM Parts**

Optimize Each Filter Stage for Minimum Volume, Cost, Losses, Weight, ...

Separation of Total Noise into CM and DM Part

Motivation

- Three-Phase CM/DM Separator between LISN and Test Receiver
- Attribute Exceeding to CM and/or DM Noise

- Optimize Each Filter Stage for Minimum Volume, Cost, Losses, Weight, ...
- Separation of Total Noise into CM and DM Part

Three-Phase CM/DM Decomposition

- CM Component Common to all Phases → Geometric Mean
- DM Component = "Not CM" → Add up to zero

- Derive CM Component and therefrom DM Components
- Circuit Representation for these Operations

Performance Metrics

- Transfer from each Input to each Output → Direct and Cross Coupling
- General Multi-Port Notation

► Three-Phase System → Three DM Inputs and Outputs

Three DMTFs and CMRRs

Realization

- 1. Passive Separator
- 2. Active Separator

Passive Noise Separator

• Y/ Δ Transformer \rightarrow Flux Addition / Cancellation

Very High Coupling Factor Required

Hardware Demonstrator

Matching of Passive Components

Active Realization preferred

Passive Noise Separator

- Y/ Δ Transformer \rightarrow Flux Addition / Cancellation
- Very High Coupling Factor Required

Hardware Demonstrator

- Matching of Passive Components
- Active Realization preferred

Passive Noise Separator

- Y/ Δ Transformer \rightarrow Flux Addition / Cancellation
- Very High Coupling Factor Required

Hardware Demonstrator

- Matching of Passive Components
- Active Realization preferred

Active Noise Separator

- Active Components (Operational Amplifiers) + Passives → No Magnetics!
- Subtract Phase Voltage from CM Voltage $\rightarrow -v_{DM}$ at Outputs

▶ Realization on PCB → Controlled Parasitic Elements → Influence?

Reproducible and Simple Manufacturing

Active Noise Separator

- Active Components (Operational Amplifiers) + Passives → No Magnetics!
- **Subtract Phase Voltage from CM Voltage** $\rightarrow -v_{DM}$ at Outputs

▶ Realization on PCB \rightarrow Controlled Parasitic Elements \rightarrow *Influence?*

Reproducible and Simple Manufacturing

Active Noise Separator

- Active Components (Operational Amplifiers) + Passives → No Magnetics!
- Subtract Phase Voltage from CM Voltage $\rightarrow -v_{DM}$ at Outputs

▶ Realization on PCB → Controlled Parasitic Elements → Influence?

Reproducible and Simple Manufacturing

Design Considerations

- Influence of Parasitic Elements
- Length Matching
- Trimming

- Assume pure CM Input Signal
- Parasitic Capacitances due to Layout + Components

Hardware Demonstrator

- Assume pure CM Input Signal
- Parasitic Capacitances due to Layout + Components

Hardware Demonstrator

- Assume pure CM Input Signal
- Parasitic Capacitances due to Layout + Components

Input A

DM Output A

Power Supply

Power

Input

- Assume pure CM Input Signal
- Parasitic Capacitances due to Layout + Components

- Difference Amplifier Crucial for CMRR
 - → Equal Source Impedances
 - → Equal Source Path Lengths
 - → Finite CMRR of Amplifier

Selection of High Performance Amplifiers

Symmetric Layout absolutely Essential! \rightarrow < 0.06° Phase Mismatch for 60dB CMRR

- Assume pure CM Input Signal
- Parasitic Capacitances due to Layout + Components

- Difference Amplifier Crucial for CMRR
 - \rightarrow Equal Source Impedances
 - → Equal Source Path Lengths
 - \rightarrow Finite CMRR of Amplifier

Selection of High Performance Amplifiers

Symmetric Layout absolutely Essential! \rightarrow < 0.06° Phase Mismatch for 60dB CMRR

- Assume pure CM Input Signal
- Parasitic Capacitances due to Layout + Components

- Difference Amplifier Crucial for CMRR
 - \rightarrow Equal Source Impedances
 - → Equal Source Path Lengths
 - \rightarrow Finite CMRR of Amplifier

Selection of High Performance Amplifiers

Symmetric Layout absolutely Essential! \rightarrow < 0.06° Phase Mismatch for 60dB CMRR

- Assume pure CM Input Signal
- Parasitic Capacitances due to Layout + Components

- Difference Amplifier Crucial for CMRR
 - → Equal Source Impedances
 - → Equal Source Path Lengths
 - \rightarrow Finite CMRR of Amplifier

Selection of High Performance Amplifiers

Symmetric Layout absolutely Essential! \rightarrow < 0.06° Phase Mismatch for 60dB CMRR

- Simplified Test Circuit for Initial CMRR Test
- Single Channel with Trimming Capacitor at CM Node

Almost at Amplifier Limit for f > 10MHz

Very Simple Trimming Procedure Results in Superior CMRR

- Simplified Test Circuit for Initial CMRR Test
- Single Channel with Trimming Capacitor at CM Node

Almost at Amplifier Limit for f > 10MHz

Very Simple Trimming Procedure Results in Superior CMRR

Results:

Performance Evaluation

Common-Mode Excitation

- Evaluation of Transfer Functions and Rejection Ratios
- Dedicated CM Input Signal Adapter

► >50dB CMRR for CE EMI Range

Significantly Better Compared to Passive Realization

Differential-Mode Excitation

- **Evaluation of Transfer Functions and Rejection Ratios**
- Dedicated DM Input Signal Adapters

- ► >50dB DMRR for CE EMI Range
- ► HF DMRR Limited by Adapter

Conclusions

Three-Phase Conducted EMI Noise Separation

Active CM/DM Separator Circuit Flat CMTF and DMTF CMRR & DMRR > 50dB up to 30MHz No Magnetic Components

Three-Phase Conducted EMI Noise Separation

Active CM/DM Separator Circuit Flat CMTF and DMTF CMRR & DMRR > 50dB up to 30MHz No Magnetic Components

Consider Impact of LISNs, Cables, Etc. !

Thank You!

Author Contact: Pascal S. Niklaus

Power Electronic Systems Laboratory www.pes.ee.ethz.ch niklaus@lem.ee.ethz.ch

