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S-Curve of Power Electronics

m Power Electronics 1.0 > Power Electronics 4.0
m Identify “X-Concepts”/ “Moon-Shot” Technologies
m 10x Improvement NOT Only 10% !

Performance
» Super-Junct. Techn. / WBG
» Digital Power
Modeling & Simulation 3
Performance Replacement P Power MQSFETS & IGB.TS /
t s (Distuptive) Microelectronics
5 SRRy » Circuit Topologies

» Modulation Concepts ,
Control Concepts )
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Wide Bandgap
X-Technology # 1 {é g' 35 Power Semrconductors
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Low Rps,,) High-Voltage Devices 1/2

m High Critical E-Field of SiC - Thinner Drift Layer
m High Maximum Junction Temperature T

j,max
4
at300K | Si  GaAs 4H/6H-SIC  GaN Eaisic |
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* 1. % . .
R, sic ® 300 R, —| n H_q

® Massive Reduction of Relative On-Resistance - High Blocking Voltage Unipolar Devices
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Low Rps,,) High-Voltage Devices 2/2

m SiC/ GaN (Monolithic AC-Switch & Integration)

m Low Circuit Complexity

m High Efficiency
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Low Switching Losses

m Si-IGBT —> Up to 6.5kV / Rel. Low Switching Speed
m SiC-MOSFETs - Up to 15kV (15t Samples) / Factor 10...100 Higher Sw. Speed

Si-IGBT / Hybrid-Pack 2

Turn-off @ TJ = 25°C
1000

25 nH

800

600

. 1inA

400

Uinv

200

] 200 400 600 800 1000
t in ns

SiC-MOSFET / (scaled for low inductance)

E ¢ = 45900 pJ -> 8 kV/us at 400V

Turn-off @ T, = 25°C
1000

16 par. Chips

800 6nH

50 A/ns
600

, 1inA

400

UinVv

=20 | 33 V/ns

o] 200 400 800 800 1000
t inns

E = 4672 W -> 44 kV/ps at 400 V

e [Extremely High di/dt & dv/dt - Challenges in Packaging / EMI
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—— Challenges ——
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Circuit Parasitics

m Extremely High di/dt

m Commutation Loop Inductance L
m Allowed L, Directly Related to Switching Time t, >

OIUi

if——— 1

6/30 —
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® Advanced Packaging / Design & Parallel Interleaving for Partitioning of Large Currents
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EMI Emissions

m Higher dv/dt —> Factor 10
m Higher Switching Frequencies > Factor 10
m EMI Envelope Shifted to Higher Frequencies

Idea: M. Schutten @

fé] = (T[ton )7| f;2: (‘J'Tl(r)’I

200

fs= 10kHz & 5 kV/us for (Si IGBT)
fs= 100kHz & 50 kV/us for (SiC MOSFET)

=
=
Vpe = 800V nf. g 160
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< 140
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e Influence of Filter Component Parasitics and Couplings - Advanced Packaging / Design
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' 3D-Packagin
X-Technology #2 {é g ﬁi b Automate% fv?anufactuﬁng
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3D-Packaging / Heterogeneous Integration

m System in Package (SiP) Approach

m Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management
m Very High Power Density (No Bond Wires / Solder / Thermal Paste)
u

A ) VICOR
Automated Manufacturing Source: h
2.1in%? and 34 W/in? 0.57 in? and 105 W/in?
72 Watts 60 Watts

- 2.3" > <—0.65"—>

1.26 in? and 26 W/in? 0.57 in? and 105 W/in?

33 Watts 60 Watts *

e Future Application Up to 100kW (!)
e New Design Tools & Measurement Systems (!)
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Monolithic 3D-Integration

Source: PANASONIC 155CC 2014

m  GaN 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology

= 9 Dual-Gate GaN AC-Switches

— DBM Gate Drive Transmitter Chip & Isolating Couplers
Ultra Compact - 25 x 18 mm? (600V, 10A - 5kW Motor)

DBM gate drive

Isolated
transmitter chip dividing
couplers
PWHM signals
5.0GHz Isolated (5kVDC) Dividing Coupler
Refomnca2 GaN integrated
Pt bidirectional
115“““ gird‘;r'::ﬁ:;gu?mchss) switchi ng Chlp
12mm & ‘ Port3
/ﬁ AR caroroncess
’ \) eference =
-, . R . 2
Port1 RF-Output Outr—
W i
(From DBM [ &
transmitter ) RF- |nput ‘ » JE-— S
pCB 0.28mm T
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e (Convergence of Design / Simulation & Measurement Tools - Augmented Reality Oscilloscope
e Measured Signals & Simulated Inner Voltages/Currents/Temp. Displayed Simultaneously
e Automatic Tuning of Simulation Parameter Models for Best Fit of Simulated/Measured Waveforms
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’ Digital Control / IToT
X-Technology #3 {f%‘ ;‘ }5 b C;%p%teg%ggec{ De‘;ign
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Digital Integrated Circuits

m Exponentially Improving uC / Storage Technology (')

— Extreme Levels of Density / Processing Speed
— Software Defined Functions / Flexibility

— (Cont. Relative Cost Reduction

Moore’s Law
Gulftown Core 6

11/30 —

Ivy Bridge

9
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AMD K10 @

8
a 10
=
o ; AMD Athlon
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6
g 10 i486 __Pentium
c MC68020 i860
o 105 80386
—
- 80286 /® mce8000
= 8086
£ 10
= 8080

8008
03 L4004
1970 1980 1990 2000 2010 2020

Year of introduction

e Fully Digital Control of Complex Systems (Capability of Managing Complexity)
e Massive Comput. Power & Cloud - Fully Automated Design & Manufacturing / Industrial IoT (IIoT)

ETH:zurich
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Automated Design
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Automated Design 1/4

n
Performance Space
e Efficiency
* Power Density N
e Costs > p
Performance Space * Reliabiliy / e Evaluation Formulas
* elc. T ¢ Lifetime Models
________________________________________ Costs ‘f(x’k) - e Cost Models
. System ' ’ . ete.
Des.lgn Space ® Phase-Shift DC/DC Conv,
* Resonant DC/DC Conv, o
e DC Link AC/AC Conv. * Specifications
e Matrix AC/AC Conv. * Operation Limits
e cle. * Converter Topology
e Modulation Scheme
1 m - e Control Concept
C()mp(ments 2 ¢ Operation Mode
¢ Power Semiconductor ¢ Operating Frequ.
e Interconnections ® eflc.
e Inductors, Transt.
e Capacitors
s Control Circuit [ ] 1 * Doping Profiles
* e m * Geometric Properties
1 ! -, Winding Arrangements
Materials ® Magnetic Core Geometries
* Semiconductor Mat * etc.
e Conductor Mat.
® Magnetic Mat.
* Dielectric Mat ,
. elc,

e Mathematical Description of the Mapping *Technologies” —> “System Performance”
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Automated Design 2/4

V], V(}, .P(), At’(}, CISPR 11/22 A,B

l

m Mathematical Models of Main Converter Topology
odulation Scheme
Converter Components & i
Interactions

Component Values, fp

Electric Power Circuit Model

1C ins i s I Lo /gy B (1) /i (D)

l T l | 1 ¢
Capacitor Transformer / Inductor Semiconductor | CM Noise ‘ | DM Noise ‘
Type + Windings Geom. Type Model Model .
* Wire Type lAE'fu lrﬁfv g
* Core Geom. - — ]
* Core Type Off-line Optimized DM/CM =
Loss Model Filter Topology 5
l Cﬂ!-wlcl'lv' ﬁ lLFJU/L('.U g
Loss Model ‘ Reluctance Model | 7; Filter Filter Inductor 3
Capacitor + Geometry E
l DL Lo | Thermal Model Type * Material E
Min. Loss Model i l 3
Losses . Windings RY
B<n + Core i ‘ Loss Model ‘ Loss Model |
=Dg
T<lu|  freim | Off-line
™ Optimized .
’ Thermal Model | Heat Sink Min.
Vol
Transformer/ Heat Semic
Capacitor | Capacitor Inductor Sink }_osseil EMI Filter | EMI Filter EMI Filter | EMI Filter
Volume Losses Volume Volume o Cap. Vol ]Cap. Losses Ind. Losses | Ind. Vol.
Summation of Component Volumes and Losses }—

|

Total Converter Volume / Losses

e Multi-Objective Optimization - Guarantees Best Utilization of All Degrees of Freedom (!)
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Automated Design 3/4

Based on Mathematical Model of the Technology Mapping
Multi-Objective Optimization - Best Utilization of the “Design Space”

Identifies Absolute Performance Limits - Pareto Front / Surface

s >p

Performance Space

Design Space

e (larifies Sensitivity Ap / Ak to Improvements of Technologies & Power Density Limit

e Trade-Off Analysis

[LPE
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Automated Design 4/4

m Design Space Diversity
m Equal Performance for Largely Different Sets of Design Parameters (!)

A A - Optimize
<& Understand

Design Space Performance Space

e E.g. Mutual Compensation of Volume and Loss Contributions (e.g. Cond. & Sw. Losses)
e Allows Optimization for Further Performance Index (e.g. Costs)
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Design Space Diversity - Example

m Design of a Medium-Frequency Transformer
m Wdg./Core Loss Ratio, Geometry, n etc. as Design Parameters
m Power Level & Power Density = const.

Diversity / Semi-Numerical / Free Ratios

Power Density / Efficiency / Frequency 350 16 g 3 . 5 3 . 160 O 00,0
100.0 I —
[fommo /3] [fomo /2] [fomma]
99.8 ] — =

= 99.6
&
= 994 k= BsaL.i
99.2
99.0 ;
5 10 20 50 100 0 0 0 0 0 0 0 0 0 0 99.5
p kW] KHz 1 1 (N 1 1 Amm*> mT K %
f n Xew X Xy Ty Vew JRMS Bpk AT n
Xew=Ac/ Ay, xXe=2z /21, Xo=hy!dy (— Optimal == Min. Freq -=- Max. Freq. e Var. Range [ Input Var. [ Output Var.]

e Mutual Compensation Core & Winding Losses Changes
e Limit on Part Load Efficiency / Costs / Fixed Geometry - Restricts Diversity

ETH:zurich EFE _
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Converter Performance Evaluation
Based on n-p-o-Pareto Surface

m Definition of a Power Electronics “Technology Node"” = (n*p*,0* f5*)
m  Maximum o [kW/$], Related Efficiency & Power Density

n
~100%
np,o
na-Opt. L oo, . A
5 0 -p-c-Pareto
/d ’”Surface
v
N
N A np-Opt.
/T Timomamas
ap-Opt.

Ir

e Specifying Only a Single Performance Index is of No Value (!)
e Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)
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Converter Performance Evaluation
Based on n-p-o-Pareto Surface

m Definition of a Power Electronics “Technology Node"” = (n*p*,0* f5*)
m  Maximum o [kW/$], Related Efficiency & Power Density

n
~100%
mp,o
na-Opt. L oo, A
9 Bl -p-o-Pareto
/4 i /Surface
A N
Nl
S T np-Opt.
VR TRl YN
ap-Opt.
0 E
5 10 :
30 1 P » > /p
40 fP
0 50

e Specifying Only a Single Performance Index is of No Value (!)
e Achievable Perform. Depends on Conv. Type / Specs (e.g. Volt. Range) / Side Cond. (e.g. Cooling)
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Comparison to “Moores Law”

m “Moores Law” Defines Consecutive Techn. Nodes Based on Min. Costs per Integr. Circuit (!)
m  Complexity for Min. Comp. Costs Increases approx. by Factor of 2 / Year

Scale —> < yjeld
105

1962 >2015: Smaller
2 Transistors but Not
104 f any more Cheaper

1965

1970

ing Cost/Comp
2

Relative M.

1 10 102 103 104 105 f;

Number of Components Per Integrated Circuit

e Definition of “n*p*,o* f,*~Node” Must Consider Conv. Type / Operating Range etc. (!)
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Digital Twin / Industry 4.0
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IToT in Power Electronics

m Digital Twin > Physics-Based Digital Mirror Image
m Digital Thread -> “Weaving” Real/Physical & Virtual World Together

Fleet Aggregate

Operational Hata

History

Maintenance

Physical Asset History : Digital Twin

Real Time
=5 Operational Data

i) ) ) | P
by

FMEA~

CAD Model ' Physics Based Models
' + Statistical Models
FEA Model + Machine Leamning

® Requires Proper Interfaces for Models & Automated Design

20/30 —

e Model of System’s Past/Current/Future State - Design Corrections / Prev. Maintenance etc.
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X-Technology #4 éif g J))i 3 Interleaving & Modularity
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History and Development of the —

Electronic Power Converter P9 LLKOR 5 £

TRANSMISSION
LINE

““L_“ D

E. F. W. ALEXANDERSON E. L. PHILLIPI

FELLOW AIEE NONMEMSBER AIEE

Figure 1. Electronic converter, dual-con-

version type
HE TERM ‘“electronic power con-
verter” needs some definition. The
object ‘may be to convert power from
direct current to alternating current for

d-c power transmission, or to convert 1 =+ : 4
power from one frequency into another, -@@@ @@@ -@@@
or to serve as a commutator for operat-

ing an a-c motor at variable speed, or for
transforming high-voltage direct current

into low-voltage direct current, Other
objectives may be mentioned. It is o @ -@@@ il @@
thus evidently not the objective but the

J | 4

Figure 4  (left),
Single - conversion-
type frequency

means which characterizes the electronic
power converter. Other names have
been used tentatively but have not been
accepted. The emphasis is on electronic
means and the term is limited to con- +4/43- J‘

version of power as distinguished from ? MOTOR

electric energy for purposes of communi- HIGH- Ow-

cation. Thus the name is a definition, VOLTAGE VOLTAGE
TRANS- MOTOR
MISSION '@ é C'RCU'T

Y 4

Figure 5 (below).
D-c transformer

tee on electronics for presentation at the AIEE

summer technical meeting, St. Louis, Mo., Jug
30, 1944, Manuscript submitted April 25 944 H

made available for printing May 18, 1944,

Paper 44-143, recommended by the AIEE commit- '

E. F. W, ALEXANDERSON and E. L. PHILLIPI are e . .
with the General Electric Company, Schenectady, 654 TRANSACTIONS Alexanderson, Phillipi— Elecironic Converter ELECTRICAL ENGINEERING
N.Y. :
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Basic Topologies Known > 30...40 Years

Min. Complexity Circuits Used in Industry
Optimization of Modulation / Control “Completed”
Several Solutions of Equal Performance

... “Refinements” & Interleaving & Hybrid SCCs
SCC ... Switched Capacitor Converters & Comparative Evaluation (!)

ETH:zurich ELFE
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Parallel Interleaving 1/2
m Loss-Neutral Multiplication of Switching Frequency
m Reduced Ripple @ Same (!) Switching Losses
1
fS,eff = NfS AImax,N :FAImaX,N=1 N=4
1 400V l P
AUmax,N = F AUmé:lX,N=1 300V Uy
U 200V
o——1—1 100V
F e ;
m i 4000V — 400V
U u 400V /\/ 300V
3 » 0 [10 | 20
4 t|ms 200V |—
= — — — N L L ' '
J:}J:?J J# I & 100V ® [ ]
- Uc S 0 A

0 2 4 6 8 10 12 14 16 f[kHz]

e Scalability / Manufacturability / Standardization / Impedance Matching / Redundancy

ETH:zurich
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Parallel Interleaving 2/2

m Loss-Neutral Multiplication of Switching Frequency
m Reduced Ripple @ Same (!) Switching Losses

1
fser =N+ [ Al =—AI

max,N ~ 2 max,N=1 N=4
N

AU =AU A ~ip
max,N ~ N3 max,N=1 WA{W{W L,
U 0 v
o ’ ' ’
Jéj:: J,’: J%} Z‘le -50A |
: U

2

o PRk 1

¢ [ms]
e Scalability / Manufacturability / Standardization / Impedance Matching / Redundancy

ETH:zurich

[LPE



=1C I Power Electronic Systems 25/30 —
I = Laboratory

Series Interleaving 1/2

m Reduced Ripple @ Same (!) Switching Losses
m Lower On-Resistance @ Given Blocking Voltage -> 1+1=2 NOT 22=4 (!)
m Extends LV Technology to HV

o 400V
S v
— 0
QJ'.I} 8f.L
Ul T . / 400V —
.

A 1 - 20 A

&
1
. JHjﬁ/u i1 0

o =L £ | — l o
= -20A

at

e 0 1.0 15 t[ms]
Ul 1+ g 400V —
Jp AD 2 1 200V | |
Y QJE'QS C,max,N — T (L)Z - Y ®
° U 32 fs7 N° 0 - A .

0 2 4 6 8 10 12 14 16 f[kHz]

e Scalability / Manufacturability / Standardization / Impedance Matching / Redundancy
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Series Interleaving 2/2

m Dramatically Reduced Switching Losses (or Harmonics) for Same di/dt and dv/dt

1
PS’ SN—1(2N2 N3 N_4
o J"% L0V T 400V -
b o Ut THLEELIITNGE 0 Uo
—
Jok ,
vl L . N =140V o 5 10 15 ¢[ms]
. B L edvidt
L Tgr . g
. TV
L R B v T dvldt Ve S t
o = = OJ::;-—T . lTVD(‘ )
A+ B I Vbe Vbe HGt Ly,
. . Vb /
U . QJ.':} Jlc 1
T - 7V
Je S At
s
 J . pS Es\\‘
) Jp 0 ) A
t

e High Efficiency @ High Effective Switching Frequency - High Power Density
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Series Interleaving - Example

m Realization of a 99%++ Efficient 10kW 3-® 400V, ,Inverter System

r

m 7-Level Hybrid Active NPC Topology / LV Si-Technology

7 Level

gl

1yl
|

Cfcl

% 99.35%
2.6kW/kg
56 W/in3

ANPC FC
Stage Stage
(50/60 Hz) (few)
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FQTURE
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S-Curve of Power Electronics

m Power Electronics 1.0 - Power Electronics 4.0
m Identify “X-Concepts”/ “Moon-Shot” Technologies
m 10x Improvement NOT Only 10% !

#1 Wide Bandgap Semiconductors ,I

#2 3D-Packaging/Integration /

#3 Power Electronics Design 4.0 7/

#4 Multi-Cell/Level Concepts 71
4.0

» Super-Junct. Techn. / WBG /= /

» Digital Power
Modeling & Simulation 3

J’)
Performance Replacement p Power MQSFETS & IGBTS /
R (Disruptive) Microelectronics
5 2 g S » Circuit Topologies
E 7 Z > Modlélat;orl Concepts 2.0
. ontrol Concepts :
\ B moN Solid SSCRS /DD'IOdeS P
olid-State Devices __/
™ Existing N 1.0
Technology RN /
» Effort/Time m * 2025

1958 2015

ETH:zurich ﬂ.‘ff -
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Automated Design Roadmap

m End-to-End Horizon of Modeling & Simulation
m Design for Cost / Volume | Efficiency Target / Manufacturing / Testing / Reliability / Recycling

Autonomous Design > Design 4.0

— Independent Generation
of Full Designs for Final
Expert Judgement

Augmented Design
- Suggestion of Design
Details Based on i
Previous Designs Assisted Design
— Support of the User with

Abstracted Database of
Former Designs

State-of-the-Art ——

- User Defined Models
and Simulation /
Fragmented

e Al-Based “Summaries” = No Other Way to Survive in a World of Exp. Increasing # of Publications (!)

ETH:zurich FLPE
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Conclusions

Challenges in Modeling & Simulation

Improvement & Combination of Analytic, Equiv. Circuit, FEM, Hybrid Red. Order Models
Models in Certain Areas Largely Missing (Costs, EMI, Reliability, Manufacturability, etc.)
Strategies for Hierarchical Structuring of Modeling (Doping Profile - Mission Profile)
Strategies for Comput. Efficient Design Space Exploration & Multi-0bj. Simulation
Sensitivity of Performance Prediction to Model Inaccuracies Largely Unknown

Design Space Diversity and Performance Sensitivities Not Utilized

AI Not Yet Utilized

Challenges of Company-Wide Introduction

No Readily Available Software

Company-Wide Model Updates & Software Updates
Complete Restructuring of Engineering Departments
License Costs

etc.

... “The Train Has Just Left the Station" (')

ETH:zurich FLPE
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Thank you!
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Manual Design Automation Strategies

m Example of Analog Integrated Circuit Design Automation
m “Top-Down” Optimization (Repetitive Refinement) vs. “Bottom-Up” Procedures

Top-Down Bottom-Up

Layout Layout

Problem Problem

Layout Expert Objectives, P ot Layout Expert
Knowledge Constraints arameters Knowledge
|| “
v
4 ) M
Optimization Engine
Selection ‘ ' Candidate ‘
Layout

Solution Strategy,
\ / Implicit Constraints
Evaluation Engine

" 4
L 2
imi Layout yo
Optimizer Sotion” e Procedure

e Top-Down -> Limited to Aspects Described in the Models / All Parasitics Must be Modelled !
e Bottom-Up —> Manual Design Process Translated into Executable Script Steered by an Expert

ETH:zurich FLPE
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Power Electronics —=> Electronics

NEW
PARADIGM
AHEAD

ETH:zurich FLPE
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“Energy” Electronics

m Design Considering Converters as “Integrated Circuits” (PEBBs)
m Extend Analysis to Converter Clusters / Power Supply Chains / etc.

— “Converter” > “Systems” (Microgrid) or “Hybrid Systems” (Automation / Aircraft)
— “Time” - “Integral over Time”
— “Power” - “Energy”

ot > (Jt)p(t)dt

Power Conversion > Energy Management / Distribution
Converter Analysis > System Analysis (incl. Interactions Conv. / Conv. or Load or Mains)
Converter Stability > System Stability (Autonom. Cntrl of Distributed Converters)

9

9

Cap. Filtering
Costs / Efficiency
etc.

Energy Storage & Demand Side Management
Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency
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New Power Electronics Systems

Performance Figures/Trends

\ 4
Supply Chain
& PP v : State-of-the-Art
Mission ]\}/afanuf ?-C tu%}f (?
ecyclin or

Energy Loss i ,g Floorspace

m Complete Set of New i Requirement
Performance Indices Total Cost of Fallure Rate

— Power Density [kW/m?] 0wner Shlp

— Environm. Impact [kWs/kW]

— TCO [$/kW] Future
— Mission Efficiency [%]
— Failure Rate [h]

/\\\
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