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► Design Automation in Power Electronics 
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► Multi-Objective Optimization

■ Advantages
• Efficiency, power density, costs, reliability, etc.
• Virtual prototyping time to market

ρ (kW/dm3)

σ (W/€)

η (%)

■ Requirements
• Models & data
• Algorithms & objectives

[Adapted from R. Burkart, PhD Thesis, ETHZ, 2016]
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► Full Numerical Model

■ Based on fundamental equations
• Maxwell
• Heat transfer
• Navier–Stokes

■ Properties
• Highest accuracy
• High modelling effort
• High computational effort

[Adapted from T. Guillod, PhD Thesis, ETHZ, 2018]

■ Methods
• FEM/FVM
• FDM/FDTD
• PEEC/MoM

■ Useful for final validation
■ Too time consuming for optimization
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► Full Analytical Model

■ Modelling approach
• Simplified physics
• Simple equations
• Explicit solution

■ MF transformer analytical model

■ Properties
• Low accuracy
• Low modelling effort
• Low computational effort

[Adapted from T. Guillod, IEEE CPSS, 2019]

■ Useful for initial estimation & understanding
■ Too many simplifications for virtual prototyping
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► Semi-Numerical Model

■ Modelling approach
• Complex equations
• Numerical solution
• Thermal-loss coupling

■ Properties
• High accuracy
• Medium modelling effort
• Medium computational effort

[Adapted from R. Burkart, PhD Thesis, ETHZ, 2016]

■ Easy to integrate in a full converter model
■ Typical choice for optimization
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► Data-Driven Model

■ Modelling approach
• Limited physical meaning
• From measured or simulated data

■ Methods
• Interpolation / regression
• Artificial intelligence

■ New class of model for magnetic?

■ Properties
• Versatile method
• Limited validity range

Inputs

Data-Driven
Greybox Model

Outputs

Supplied Data

[Theoretical background: S. Skansi, Introduction to Deep Learning, 2018]
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► Artificial Neural Networks

■ Artificial neural networks
• Machine learning
• Input/output mapping

■ Difficulties
• Choice of the network & data
• Extrapolation is difficult

■ Advantages
• Versatile method
• Very fast evaluation

Regression

Inputs

Validity
Classification

Invalid

Class 1

Class 2
Regression

Regression
Class 3

Outputs

Training Training

[Theoretical background: S. Skansi, Introduction to Deep Learning, 2018]

Select the network weights in order to
reconstruct the outputs with minimal error
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► Artificial Neural Networks

■ MF transformer model
• Semi-numerical model
• Thermal-loss coupling

■ Artificial neural networks
• 5’000 designs for training
• Prediction of 130’000 designs

■ 1’000’000 designs per second
■ Promising but the parametrization is tricky!

Neural Net.

Frequency
Number of turns

Flux density
Current density

Efficiency

Power density

Training

Training Data

Reference Data

Neural Network / 2 Layers

Neural Network / 8 Layers

[Theoretical background: S. Skansi, Introduction to Deep Learning, 2018]
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► Model Properties

■ Properties (worst case)
• Multivariable (input/output)
• Non-linear
• Non-convex
• Non-continuous
• No (explicit) gradient
• Constrained (explicit/implicit)
• Mixed-integer (discrete variables)

■ Which optimization method?
■ The perfect solution does not exist

[Adapted from T. Guillod, IEEE CPSS, 2019]

■ Design space to performance space
• No clear trends
• No clear mapping
• No clear optimum
• Analytical opt. are not sufficient

■ Design space diversity



14/28

► Design Space Diversity

■ MF transformer semi-numerical model
• Fixed power: 20kW
• Fixed volume: 1dm3

• Loss range: [Popt, Popt +15%]

■ Local optima and/or flat optima
■ Robustness of optimization algorithms?
■ Opportunities for additional constraints?

■ 300’000 designs with similar performances
• Frequency: [50, 300] kHz
• Flux density: [25, 120] mT
• Current density: [1.8, 6.5] A/mm2

Geometrical Aspect RatioQuasi-Optimal Designs

[Adapted from T. Guillod, IEEE CPSS, 2019]
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► Brute Force Grid Search

■ Algorithms properties
• Extremely robust
• No restriction on the model
• Exponential scaling
• Relatively slow but parallelizable
• Can be combined with heuristics

■ A desktop computer makes 25-400 billion floating point operations per second!
■ A cloud computing server cost 5-10¢ per hour!

■ DC-DC resonant converter
• Semi-numerical model
• Accurate thermal-loss coupling
• Vectorized, parallel, and optimized
• 100’000 designs per second

■ Brute force is (whenever possible) the best solution

[Theoretical background: S. Rao, Engineering Optimization, 2009]
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► Gradient, Simplex, Geometric Programming

■ Algorithms properties
• Extremely fast convergence
• Problems with local minima
• Problems with design space diversity

■ Restrictions on the model
• Smooth function (gradient opt.)
• Posynomial function (geom. prog.)
• No discrete variables (various alg.)
• No complex constraints (various alg.)

■ Restricted to problems with compatible models and constraints
■ Can be combined with other approaches (e.g. brute-force)

Gradient Opt.

Failure

[Theoretical background: S. Rao, Engineering Optimization, 2009]
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► Genetic Optimization, Particle Swarm, Simulated Annealing

■ Algorithms properties
• Stochastic approach
• Slower convergence
• Compatible with local minima
• Compatible with design space diversity
• Few restrictions on the model

■ Genetic algorithm
• Initial population
• Fitness / selection
• Crossover / mutation

■ Good trade-off between robustness and speed

Genetic Opt.

Success

[Theoretical background: S. Rao, Engineering Optimization, 2009]
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► Artificial Neural Networks

■ Deep learning
• Given specifications
• Extract Pareto Front
• Within seconds

■ Difficulties
• Choice of the network & data
• Handling discrete data
• Scaling to large problems

■ Artificial neural networks
• Prediction the number of sol.
• Predicting the losses
• Adjusting the Pareto front

Neural Network for Inductor Pareto Fronts Training Data from Genetic Alg.

[Infineon Technologies, Villach, Austria]
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► Artificial Neural Networks

■ For quick comparison between technologies
■ For getting a good initial design guess

■ Generates inductor Pareto fronts in less than 5 seconds!

[Infineon Technologies, Villach, Austria]
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► Case Study: Solid-State Transformer for Datacenter

[Adapted from D. Rothmund, IEEE JESTPE, 2018]

■ DC-DC perf. target: 99% & 3kW/dm3 & single hardware iteration
■ How to optimize using the design space diversity?

■ Single-stage SST for datacenters presented by                                 
• 3.8kV AC input
• 400V DC output

• 25kW
• 10kV SiC technology
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► Converter Pareto Front

■ Global optimum is composed of sub-optimal components
■ Design space diversity?

■ Trade-off: switching frequency
• Transformer: reduced volt-second product
• Semiconductors: switching losses

[Adapted from T. Guillod, PhD Thesis, ETHZ, 2018]

■ Selected frequency: 48kHz
• System optimum: 48kHz
• Transformer optimum: 100kHz

DC-DC Pareto Front Transformer Pareto Front
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► Converter Pareto Front

■ How to use the design space diversity?
■ Brute force grid search / genetic alg.

■ Trade-off: switching frequency
• Transformer: reduced volt-second product
• Semiconductors: switching losses

[Adapted from T. Guillod, PhD Thesis, ETHZ, 2018]

■ Selected frequency: 48kHz
• System optimum: 48kHz
• Transformer optimum: 100kHz

DC-DC Pareto Front Transformer Pareto Front
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► Design Space Diversity: Accommodating Practical Constraints

■ Accommodating available core & litz wires: 0.02% impact
■ Design space diversity mitigates the impact

■ Transformer optimization
• Every core geometry
• Every litz wire stranding

■ Practical constraints
• Manufacturability
• Which impact?

■ Available parts
• Core & winding
• Which impact?

[Adapted from T. Guillod, PhD Thesis, ETHZ, 2018]

Transformer Pareto Front



25/28

► Design Space Diversity: Adding a Secondary Goal

DC-DC Converter Loss Distribution DC-DC Converter Meas. Efficiency

99.0% @ 100% load■ Partial load efficiency as an additional trade-off
• No-load losses (core)
• Load losses (winding)
• Negligible impact on the full-load efficiency 3.8 kW/dm3

99.0% @ 50% load

■ Design space diversity means that additional goals are achievable

[Adapted from D. Rothmund, IEEE JESTPE, 2018]
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►Conclusion & Outlook

■ Models
• Analytical model for basic comparison
• Semi-numerical model for optimization
• Numerical model for verification
• Data-driven model has potential

■ Design space diversity
• Different designs  same performances
• Enable add. objectives and constraints
• Should be checked  don’t miss opportunities

■ Optimization
• Brute force is robust and reasonably fast
• Genetic, part. swarm, neural network, etc.
• Care is required: no guarantee for global opt.

■ Remaining challenges
• Integration in industrial context
• Readily available software, model, data, etc.

?
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