

Circular Economy Compatible Power Electronics

Jonas Huber, Johann W. Kolar, Luc Imperiali

Power Electronic Systems Laboratory ETH Zurich, Switzerland

September 9, 2024

Outline

- Avoid and Reduce
- Paradigm Shift
- Multi-Objective Optimization
- Circular Economy Compatibility

Growth of Global E-Waste

■ Growing global e-waste streams: 120'000'000 tons of global e-waste in 2050 / < 20% recycling!

Critical Minerals

- Production of selected minerals critical for the clean energy transition
- Extraction & processing more geographically concentrated than for oil & gas (!)

■ EU Critical Raw Material (CRM) Act 2024 → Sustainability & circularity of CRMs on the EU Market

"Avoid and Reduce"

Today's power electronics innovation basically contributes to lower environmental impact

New set of KPIs mandatory to meet future environmental protection objectives

Example: Copper Use in EVs

Cu used for traction motors, energy storage, power electronics, HV & LV, etc.
ICE (2023) — 29.5 kg | BEV Robotaxi in 2034 — 73 kg (7.8 kg motor & power electronics)

■ Transition Si IGBTs → SiC MOSFETs — 25...30% Decrease of Cu intensity in the power electronics

The Paradigm Shift

- Linear Economy
- Take make dispose

Circular Economy

• Perpetual flow of resources

• Resources returned into the product cycle at end of life

LCA Example: Carbon Footprint of a 150-kW PV Inverter

Production phase / embodied carbon footprint of 903 kg CO₂eq (15...20% of life-cycle carbon footprint)
Use phase contributes >80% to life-cycle carbon footprint (conversion losses & standby/night consumption)

Embodied Carbon Footprint

■ 150 kW rated power for typ. 225 kW_p PV system

Auxillary-PCB

A Priori LCA Example: 10-kW Three-Phase AC-DC PEBB

Key power electronic building block (PEBB) for three-phase PFC rectifiers & inverters

FPGA Power-PCB Filter Capacitors (C)Switches (T_a, T'_a) Heatsink Boost Inductors (L) DC-Link Capacitor (C_{dc})

- Degrees of freedom: Switching freq. [25...700 kHz]
 - Rel. Ind. Peak cur. ripple [0.25...1.5]
 - Var. transistor chip area
 - Variable ind. size (N87; solid/litz)
- Assumptions:
- Junction temp. @ 120 °C
- Ambient temp. 40 °C
- Necessary heat sink vol. via $CSPI = 25 W/(K dm^3)$

Multi-Objective Optimization Including Env. Impacts

Trade-Offs

Frequency

- Efficiency vs. power density
- Efficiency vs. environmental _ compatibility regarding embodied GWP (carbon footprint)

Env. Impacts with high uncertainties due to data availability/quality

Multi-Objective Optimization Including the Use Phase

Life-cycle carbon footprint strongly depends on electricity mix and mission profile / usage intensity

Comprehensive Environmental Impact Profiles

Different bridge-leg topologies — 2-Level (1200-V SiC) | 3-Level (650-V SiC) | 7-Level (200-V Si)

Embod. env. footprint of 2L/3L/7L-designs with η ≈ 99% and max. env. compat. ε_{GWP} in W / kg CO₂eq
Same efficiency via different usage of act./pass. components — Different environmental impact profile!

"Closing the Loop"

■ Including 4R into the design process — Repair / Reuse / Refurbish / Recycle

- How to quantify repairability / reusability / ...?
- Value proposition through life-cycle cost perspective (suppliers and customers)?

Integration: Minimize Size / Initial Resource Usage

- Maximum integration facilitates extreme power densities (10...100 x conv.)
- Example: 30 kW non-isolated fixed-ratio conversion (400 V to 800 V) in 92 x 80 x 7.4 mm³ — 550 kW/dm³ and 130 kW/kg
- Opposite of CEC (?) Low initial material usage ↔ Difficult material separation

VICOR

1	2	3	Plating	5
Bare papel	Surface mounting	Overmolding		CHiP modules
The process begins with a bare panel, ready for multiple instances of the same high-performance module, analogous to a silicon wafer	High-quality power components, including magnetics, are mounted and soldered via state-of-the-art pick-and-place tools	A plastic compound encases the panel, protecting the components and creating a flat surface that makes the final product easier to handle	Heat conducting metals are plated onto the panel to enable a thermally efficient and reliable finished product	The panels are singulated into individual modules and tested for conformance to data sheet specifications

Example: Isolated dc-dc

Modularity Facilitates Upgrade, Reuse, Repair, ...

- Modular design for ease of disassembly: Maintainability, upgradability, repairability, reusability, recyclability
- **FAIRPHONE** Modular design / man. replaceable parts / 100% recycl. of sold products / fairtrade materials

- Grouping of components determined by reliability level & expected lifetime / level of reusability or recyclability
- Standardized interfaces / Mechanically loose connections ↔ Electrical characteristics
- Potential for leveraging economies of scale to compensate interface costs (?)

CEC Power Electronics Roadmap

Environmental awareness as integral part of environmentally conscious power electronics design

Automated design | On-line monitoring | Preventive maintenance | Digital product passport

Thank You!

