

Power Electronic Systems Laboratory

10kV SiC MOSFETs for Solid-State Transformers: Opportunities and Challenges

X-Power Electronics Conference

24 May 2019, Huawei Songshan Lake, China

Thomas Guillod, D. Rothmund, J. W. Kolar

Power Electronic Systems Laboratory ETH Zurich, Switzerland

Acknowledgement

The authors would like to thank

- Dr. Jonas Huber
- Dr. Florian Krismer
- Dr. Dominik Bortis
- Piotr Czyz

for their contributions.

Agenda

- Introduction
- 10kV SiC FETs
- Switching Frequency
- MV/MF Galvanic Insulation
- SST Prototypes
- Conclusion

Introduction

SST Definition Applications 25kW SwiSS-Transformer

What is a Solid-State Transformer (SST)?

- Power electronics interface
- Medium voltage connection
- Medium frequency isolation stage
- Communication link
- I/O quantities
 - DC/DC
 - AC/DC
 - AC/DC
 - 1ph, 3ph, var. freq.
 - MV/LV, MV/MV

Terminology

McMurray	Electronic Transformer (1968)
Brooks	Solid-State Transformer (SST, 1980)
EPRI	Intelligent Universal Transformer (IUT)
ABB	Power Electronics Transformer (PET)
Borojevic	Energy Control Center (ECC)
Wang	Energy Router

Medium Frequency: Transformer Scaling Laws

ETH zürich

DC Collecting Grids for PV

■ Globally installed PV: forecasted to 2.7 Terawatt by 2030 www.iea.org

Source: REUTERS/Stringer

Medium-Voltage power collection and transmission

Conventional

Future SST

• DC/DC for MPPT

• LF transformer

• Direct MV interface

1.5% efficiency gain

DC Collecting Grids for PV

Conventional ▼ Future SST High-Voltage Transmission System HV Mains **HV** Mains DC/DC SST for MPPT AC Medium-Voltage AC AC -AC. 99%LFT DC DC $99\,\%$ AC Medium-Voltage DC Collector Grid AC. AC, DCDC $98.5\,\%$ DC DC DC ΆC AC╧╢──⊳ ╧╢┷ SST6 SST \bigcirc $99\,\%$ DC, AC DC AC $99\,\%$ DC ′DC DC DC Low-Voltage DC- DC : ÷ ••• •••

[Kolar/Schröder, Springer, 2018]

Ultra-Fast / High-Power EV Charging

- High power converter (100kW...2MW)
- Medium voltage connected charging systems

E.g., Porsche FlexBox incl. cooling Local battery buffer (140kWh) 320kW → 400km range in 20min

Source: Porsche / Mission-E Project

Ultra-Fast / High-Power EV Charging

Conventional

Future SST-based concepts

■ Power / energy management → "energy-hub"

[Kolar/Schröder, Springer, 2018]

DC Systems for Datacenters

- Ranging from medium voltage to power-supplies-on-chip
- Short power supply innovation cycles
- Advantages
 - Modularity / scalability
 - Higher efficiency
 - Higher power density
 - Lower costs

33 Watts

60 Watts

Source: www.vicorpower.com

Source: REUTERS/Sigtryggur Ari

DC Systems for Datacenters

Conventional

Direct 3-phase 6.6kV AC \rightarrow 48V DC

■ 3...7% reduction in losses & smaller footprint

[Kolar/Schröder, Springer, 2018]

SwiSS-Transformer Concept for Datacenters @ ETH Zurich

- Specifications
 - Bidirectional 3.8kV AC (1-phase) to 400V DC SST
 - 25kW power rating
- **Target**
 - 98% efficiency

Solid-State Transformer

■ Single-stage SST concept → 10kV SiC

[Rothmund, IEEE JESTPE, 2018]

Handling MV with SiC

Single-stage Multi-cell Modular

► Single-Stage vs. Multi-Cell

- **LV vs. MV** semiconductors
- Si vs. SiC semiconductors

Complexity / volume / losses / reliability / redundancy

ETH zürich

Complexity of Multi-Cell / Modular Converters

• Actual realization of a modular MV converter systems \rightarrow complex task

- Isolation coordination
- Cooling
- Control & communication
- Hot-Swap

- Auxiliary supply
- Mechanical assembly
- Fault protection
- etc., etc.

PCIM Europe 2015, 19 - 21 May 2015, Nuremberg, Germany

Integration Technologies for a Fully Modular and Hot-Swappable MV Multi-Level Concept Converter

Didier Cottet, Wim van der Merwe, Francesco Agostini, Gernot Riedel, Nikolaos Oikonomou, Andrea Rüetschi, Tobias Geyer, Thomas Gradinger, Rudi Vetithuis, Bernhard Wunsch, David Baumann, Willi Gerig, Franz Wildner, Vinoth Sundaramoorthy, Enea Bianda, Franz Zurlluh, Richard Bloch, Daniele Angelosante, Dacfey Dzung, ABB Switzerland Ltd., Corporate Research, 5405 Baden-Dättwil, Switzerland

Tormod Wien, Anne Elisabeth Vallestad, Dalimir Orfanus, Reidar Indergaard, Harald Vefling, Arne Heggelund, ABB Norway Ltd., Corporate Research, 1375 Billingstad, Norway

Jonathan Bradshaw, DPS Ltd., Auckland 1010, New Zealand

Contact: didier.cottet@ch.abb.com

ETH zürich -

Example: MV MMC presented by

ETH zürich

Complexity of Multi-Cell / Modular Converters

All interfaces must support modularity – hot-swapping test @ 24kV (!)

▼ Bypass Test

V Bypass Switch

[Cottet, PCIM Europe, 2015] [Cottet, ECCE USA, 2015]

SST for Datacenters: Multi-Cell

Multi-cell SST (ISOP) for datacenters presented by F Fuji Electric • 5 cells

- 2.4kV AC input
- 54V DC output
- 25kW

ETH zürich

• Si technology

• 10 transformers / 12 inductors • No redundancy

• 65 switches / 35 diodes

• LV Si FETs \rightarrow very complex structure

Width (50 mm)

SST for Datacenters: Single-Stage

Single-stage SST for datacenters presented by ETH zürich

• 3.8kV AC input

• 1 cells

• 400V DC output

• 10 switches / 0 diodes

• 25kW

• 1 transformers

• SiC technology

• 3 inductors

• Much simpler structure \rightarrow require HV SiC FETs

ETH zürich

Driving HV SiC

Isolated Supply Gate-Drive Fault Protection

► HV SiC MOSFETs

■ 6.5..15kV SiC FETs → new challenges for packaging, driving, etc.

- Isolated power supply
- Isolated communication
- Fault detection

- Insulated cooling pad
- Electric field shaping
- Clearance / creepage

► Low Inductance or Low Capacitance?

- HV system \rightarrow high impedance
 - Stray inductance are less critical
 - Stray capacitance are critical
- Paradigm shift towards low capacitive designs

W HV SiC Module Prototypes

[DiMarino, CPES, 2019] [Kraig, NIST/DOE, 2014] [Rothmund, IEEE JESTPE, 2018]

1000

► Isolated Power Supply

- Low capacitance
- **HV CM insulation**
- EMI robustness
- **Compact** design

▼ ABB / IPT

▼ Fraunhofer / Toroid

▼ TDK / Fiber

ETH zürich

► Isolated Power Supply with Air Gap Insulation

5

4 [kV/mm] 2 [kV/mm]

2

Two core halves separated by insulation

- Vacuum potted in silicone
- 2.6pF coupling capacitance

Spacer

Winding

9 mm

Spacer

• 3.1 cm³ volume

Core

.6 mm

■ Isolation testing: 20kVDC for 1 hour & 7kV / 50...200kHz for > 50 hours

► Short-Circuit Detection

HV SiC devices

- Sensitive devices (compared to IGBTs)
- Expensive devices

Fault detection

- EMI immunity
- High bandwidth
- Compact design
- Different concepts are working

▼ ETHZ / Gapped Current Trf.

► Fault: Hard Switching

Testing for hard switching fault @ 7kVDC

- Current transformer for overcurrent detection
- 25ns delay from overcurrent threshold to gate voltage reaction

• Hard switching \rightarrow 50A max. curr. / 200ns for turn-on of low-side switch

[Rothmund, IEEE JESTPE, 2018]

► Fault: Flashover

Testing for flashover fault @ 7kVDC

- Most critical case
- Specific to MV systems

Flashover (gas discharge tube) $\rightarrow du/dt = 1.2MV/us / switching 7.2kV in 6.0ns (!)$

Realized 10kV SiC Half-Bridge

Creepage: PCB slots / silicone tubes (IEC norm)

tube

- Components
 - Insulated supplies
 - Gate drivers
 - Fault protection
 - DC-link capacitor
- **Cooling of FETs**
 - Heatsink on potential
 - Reduced parasitic cap.

Switch-node

potential

HV SiC Performance

Single-stage Multi-cell Modular

ETH zürich

► Conduction Performances

- HV SiC FETs approaches the SiC limit
- HV SiC FETs have low condution losses
- Beware: MV bipolar devices (SiC IGBTS) are even better

▼ DC-DC Converter / Conduction Losses

Side	Devices	Res. / Switch	Cond. Losses
7kV	1x parallel	400mΩ	28W
400V	3x parallel	11.3m Ω	113W

SiC Limit Extrapolation State-of-the-art SiC MOSFETs 15 kV

▼ SiC FETs Scaling

Equal MV and LV conduction losses \rightarrow **2.6m** Ω would be required (!)

Switching Losses

Hard-switching vs. soft-switching

- Significant hard sw. losses (still better than Si IGBT)
- Hard switching limit the frequency to 5kHz
- 30-times lower soft-sw. losses / lower du/dt

ZVS topologies should be favored

Measuring ZVS Losses: Transient Calorimetric

- **Electric measurements** are too inaccurate for MV ZVS losses
- **Transient calorimetric measurements**
 - DUT on therm. isolated brass block
 - Temp. gradient indicates total power loss
 - Add. switch S₀ for separation of cond. & sw. losses

• No subtraction between E_{on} and $E_{off} \rightarrow$ accurate measurements

ZVS Switching Performances

- **HV SiC FETs have good ZVS performance**
- **ZVS** losses still in range of cond. losses @ 48kHz

▼ DC-DC Converter / Switching Losses / 48kHz

Side	Devices	Energy / switch	Sw. Losses
7kV	1x parallel	191µJ	18W
400V	3x parallel	8µJ	2W

LV SiC FETs have better switching performances

▼ MV Bridge

▼ LV Bridge

ETH zürich

► SST for Datacenters: AC-DC ZVS

Integrated Triangular Current Mode (iTCM) topology

- Increase of current ripple by an additional LC-branch
- Separation of the HF and the LF current

- Open-loop variation of sw. frequency for const. ZVS current (35...75kHz)
- Well-known PWM modulation applicable

► SST for Datacenters: DC-DC ZVS

Series Resonant Converter (SRC) topology

- Operation at resonance frequency (48kHz)
- Acts as "DC transformer"
- ZVS with trf. mag. current

New phase-shift modulation scheme

- Active splitting of the mag. current between the LV and MV side
- Better than synchronous rectification

[Guillod, IEEE TPEL, 2019]

Switching Frequency

Frequency dependent losses Optimal Frequency Trade-offs

Frequency Selection

- Magnetics profit from high sw. frequencies
 - Reduced losses
 - Reduced volume
- Semiconductors profit from low sw. frequencies
- System optimum

Overview

Top View

[Soltau, RWTH, 2017] [Zhao, IEEE TPEL, 2018]

37/71 —

Optimal Frequency of Transformers

Magnetics profit from high sw. frequencies

- Core losses → reducing (volt-second prod.)
- Winding losses \rightarrow increasing (skin / prox.)
- Transformers have optimal op. frequencies

Increasing frequency is not always good (!)

ETH zürich

► Sensitivity: Optima are Flat

- Transformer optima are flat
- $f_{opt}/2 \rightarrow max$. 15% add. losses
- Additional effects
 - Switching losses
 - Neglected losses, e.g. busbars

▼ **Optimization Method**

• Opt. converter frequency << opt. trf. frequency

ETH zürich

[Guillod, ETHZ, 2018]

Benchmark of DC-DC / Single-Cell

Side	ETHZ 25kW	NCSU 20kW	NCSU 10kW
Voltage	7kV / 400V	10kV / 340V	6kV / 400V
Frequency	48kHz	37kHz	40kHz
Switches	HV SiC	HV SiC	HV SiC
Density	3.8kW/dm³	1.5kW/dm ³	n/a
Efficiency	99.0% ★	97.3%	97.4%

▼ Efficiency

▼ NCSU 20kW

▼ ETHZ 25kW

■ Similar sw. frequency ≠ similar performance

[Wang, IEEE JESTPE, 2017] [Zhu, APEC, 2018] [Rothmund, IEEE JESTPE, 2018]

Benchmark of DC-DC / Multi-Cell

Side	ETHZ 25kW	CPES 5x15kW	Fuji 5x5kW
Voltage	7kV / 400V	4kV / 400V	3.8kV / 54V
Frequency	48kHz	500kHz	70kHz
Switches	HV SiC	LV SiC/GaN	LV Si
Density	3 . 8kW/dm ³	2.9kW/dm ³	3.5kW/dm ³
Efficiency	99.0% ★	97.9%	97.5%

90mm(3.5 in)

▼ CPES 5x15kW

Power Density: 48W/ir

■ High sw. frequency ≠ high performance

▼ Multi-Cell

ETH zürich

MV/MF El. Insulation

DC Voltages LF AC Voltages PWM Voltages

► Insulation with MV/MF Converters

- New HV SiC devices
 - Voltages: 15kV
 - Frequencies: 200kHz
 - Switching speed: 150kV/µs

Example: Eagle Pass HVDC

- MF harmonics
- Losses in cable terminations
- Time to failure: one week

• Eagle Pass: Terminations

Design and aging of electrical insulation of MV/MF converters is critical

Geometry & Field Shaping

- Field shaping
 - Wide spectrum: 0..10MHz
 - Grading without losses
 - Interfaces between media
- Basic contradiction
 - HV: large distances
 - MF: small distances

▼ 10kV Module: Field Shaping

E [¥/m] Mo Posts 2.0000E+00 1.8667E+00 1.73335+007 1.6000E+00 1.4667E+007 10 kV SiC 1.3333E+007 MOSFETs 1.20002+00 1.0667E+007 9.3333E+006 8.0000E+00 6.6667E+006 5.3333E+006 4.0000E+006 2.6667E+006 1.3333E+006 . 0000E+00

▼ Transformer: Field Shaping & Shielding

 $i_{\text{frame}}/V_{\text{DC}} [\text{mA}/\text{kV}]$ 0 05

resistive

shield

ETH zürich

5.0

44/71 —

5.2

CM Current / Time

unshielded

shielded

5.4

Time [µs]

5.6

Oscillations / Overvoltages

- Component resonances
 - Uneven voltage sharing
 - Additional stress
 - Additional losses
- Careful design
 - Geometry & materials
 - Low parasitics

▼ MV/MF Transformer: Critical Resonances

▼ MV/MF Transformer: No Resonance **Terminal Voltage** Winding Currents +500+10+100+250+5+50 $v_{\rm MV}$ v_{MV} [V] $i_{\rm MV}$ [A] $i_{\rm LV}$ [A] $i_{\rm LV}$ 0 0 0 i_{LV} -250-50 -5-500-10-1005 5 10 15 20 0 10 15 20 0 $t \, [\mu s]$ (a) $t [\mu s]$ **(b)**

[Tripathi, ECCE Asia, 2014] [Rothmund, APEC, 2015]

Dielectric Losses

- Dielectric losses
 - Frequency dependent
 - Temperature dependent
- **Critical** with MV/MF voltages
- MV/MF transformer @ 48kHz
 - Époxy resin
 - 17% of the full-load losses
 - Thermal runaway at 130°C
- Better materials (e.g. silicone)

ETH zürich

► Partial Discharges

- Partial discharges at MF
 - Different that 50Hz
 - Sinus ≠ PWM
 - Extremely critical
- Difficult task: meas. & interpretation
- Lack of knowledge for MV/MF systems

[Wang, IEEE TIE, 2014] [Zhao, IEEE TPEL, 2018]

ETH zürich

Insulation Test Bench

- Reproduce converter stress: DC/AC+PWM
 - 0..20kV DC or 50Hz
 - 0..2kV PWM Voltage
 - Variable rise time
 - Controlled temperature/humidity
- Monitoring
 - Dielectric spectroscopy
 - Optical monitoring
 - UV/IR monitoring
 - Automated testing

▼ Remote Control

▼ Test Cell

MV/MF Transformers

Fundamentals Design Space Diversity Electrical Insulation

ETH zürich

Transformer Optimum

- Many degrees of freedom
 - Geometry: coaxial, core, shell
 - Winding: litz wire, foil, PCB
 - Core: ferrite, amorphous, nanocrystaline
 - Cooling: oil, air, water, natural, forced
 - Insulation: air, dry-type, oil
- Optimization procedure required

[Guillod, ETHZ, 2018]

Design Choices

• Who is right / has the best concept?

E-Core / Shell-Type C-Core / Shell-Type C-Core / Core-Type (a) **(b)** (c) E-Core / Planar E-Core / Coaxial R-Core / Coaxial (d) (f)

(e)

▼ Transformer Types

ETH zürich

Design Space Diversity

- Design space diversity
 - Many different designs have similar performances
 - Flat optima / local optima
- Optimization
 - Intrinsically difficult
 - Global optim. alg. required

▼ 48kHz Prototype

▼ Diversity: Fixed Volume / Power **V** Pareto Front 350 100.0 16 8 8 11 5 180 100 500k 100 opt. 50k [7] 5k 500 opt.+15% Efficiency [%] 99 98 500 0 0 0 0 0 0 0 0 0 0 99.5 97 50 kHz 1 A/mm² mT % 10⁰ 10¹ 1 1 1 1 1 K 10⁻¹ 10² J_{rms} Power Density [kW/l] f ΔT B n n X X Xw rw r

• Design space diversity \rightarrow numerical opt. required \rightarrow add. freedom

► Impact of Insulation

Electrical insulation

- >7kV DM insulation
- >15kV CM insulation
- Dry-type insulation
- Critical impact on the power density

▼ 48kHz Prototype

Electrical insulation should be considered during the optimization

► Insulation Concept: Air Gap Insulation

Specifications

- 500kHz / 15kW
- 800V to 400V
- Multi-cell structure
 - DM voltage is small
 - CM insulation (17kV_{peak} / 30kV_{surge})
- Air gap insulation
 - Epoxy / PTFE
 - CM insulation

• Increased winding losses

Insulation Concept

00000

Bobbin

thickness 8

Clearance

0.0000E+00

Bobbin Distance

Good for multi-cell SSTs

Bobbin

Electric Field E [V/m] 5.5000E+006 4.9500E+006 4.6200E+006 4.2900E+006 3.9600E+006 3.6300E+006 3. 3000E+006 2.9700E+006 2.6400E+006 2.3100E+006 1.9800E+006 1.6500E+006 1.3200E+006 9.9000E+005 6.6000E+005 3.3000E+005

▼ Multi-Cell SST

800V DC 500kHz isolated DC/DC 400V DC

DC/DC Module 1

DC/DC Module 2

DC/DC Module 3

DC/DC Module 4

Line to Line

4.16kV

AC/DC

AC/D

AC/DC

Phase Phase Phase

V_{AN}=2.4kV

[Zhao, IEEE TPEL, 2018]

ETH zürich

Tape

thickness

Creepage

Distance

54/71 —

► Insulation Concept: Hybrid Insulation

Specifications

- 10kHz / 240kVA
- 800V to 600V
- Voltage stress
 - DM voltage is small
 - CM insulation (100kV_{peak} / 150kV_{surge})
- Hybrid insulation
 - Epoxy / air
 - Air cooling
 - Increased volume

V Prototype

Good for extreme CM voltages

V Flashover

▼ Insulation Concept

ABB

Insulation Concept: Air-Core Transformer

Specifications

- 103kHz / 166kW
- 7kV to 7kV
- Aircraft applications
- Air core transformer
 - No magnetic core
 - Air insulation

ETH zürich

- High efficiency (>99.6%)
- Reduced weight (>25kW/kg)

▼ Future Hybrid Aircraft

Gravimetric Power Density (kW/kg)

▼ Gravimetric Power Density

[Czyz, ECCE Asia, 2018]

Insulation Concept: Sillicone Insulation

Specifications

- 48kHz / 25kW
- 7kV to 400V
- **Single-stage structure**
 - DM insulation (>7kV_{peak})
 CM insulation (>15kV_{peak})
- Potted winding
 - Silicone insulation
 - Air ducts for cooling
 - Low winding losses
- Good trade-off

ETH zürich

▼ CAD Design

V Prototype

▼ Measurements

► Construction / Potting

- Silicone insulation ("TC4605 HLV")
 - Low losses at MF
 - High thermal conductivity
- **Vacuum** silicone injection

Electric Field Shaping

- Field shaping
 - 2 chambers with 3 layers
 - Reduced parasitics / resonances > 2MHz
- Insulation stress
 - 1.2 kVar cap. react. power
 - 8.4W dielectric losses
 - 2.3kV/mm in silicone
- Controlled insulation stress

▼ Electric Field / Dielectric Losses

▼ LV Winding / MV Winding

▼ Optimized Winding Scheme

SST Prototypes

Commissioning Efficiency Calorimeter

ETH zürich

► AC-DC Stage: Design

- Single-stage 25kW AC/DC
 - 3.8kV AC input
 - 7kV DC output
- **Fully functional stand-alone system**

[Rothmund, IEEE JESTPE, 2018]

► AC-DC Stage: Waveforms

- ZVS with iTCM modulation
- 35..75kHz switching frequency
- Constant ZVS current

8

■ Full-load measurement (25kW @ 7kV DC) - ZVS over full AC cycle (!)

[Rothmund, IEEE JESTPE, 2018]

▼ Measurements

► AC-DC Stage: Efficiency

99.1% efficiency @ 100% load

- 98.7% efficiency @ 50% load
- Low losses despite 35...75 kHz sw. frequency
- 3.3kW/dm³ (box volume)

▼ Efficiency

[Rothmund, IEEE JESTPE, 2018]

► DC-DC Stage: Design

- Single-stage 25kW DC/DC
 - 7kV DC input
 - 400V DC output
- MV/MF transformer is the challenge

▼ MV Bridge

▼ MV/MF Trf.

Core

Grounding bar

LV termi

170 1

Winding

▼ LV Bridge

Transformer Efficiency: Calorimeter

- Electrical measurement
 - Too inaccurate / >99.5% / 48kHz
 - MV probes are not accurate enough

Double-Jacketed Cal.

Heating Foil

Heat Exchanger

 \square

DUT Preheater ←

 $\bigcap \bigoplus P_{foil}$

 $\overset{T_{amb}}{\stackrel{T_{in}}{\stackrel{T_{out}}{\stackrel{T_{out}}{\stackrel{T_{iest}}{\stackrel{T_{iest}}{\stackrel{T_{gap}}{\stackrel{V}{\stackrel{V}}}}}}} \overset{V}{\stackrel{Ctrl}{\stackrel{P_{pump}}{\stackrel{P_{foil}}{\stackrel{P_$

- **Double-jacketed calorimeter**
 - Two insulated chambers

Pump

Electrical Connections

Air Gap

• Water flow & heat exchanger

Heat Pfan Exchanger

Test Chamber

▼ Transformer / Calorimeter

▼ Trf. Efficiency

No out of the box meas. device exists for MV/MF systems

Flow Sensor Water Temperature

N

Sensor

[Christen, IPEC, 2010] [Rothmund, IEEE JESTPE, 2018]

ETH zürich

DC-DC Stage: Waveforms

■ Full-load measurement (25kW @ 7kV DC) - load-independent ZVS (!)

[Rothmund, IEEE JESTPE, 2018]

► DC-DC Stage: Efficiency

99.0% efficiency @ 100% load

- 99.0% efficiency @ 50% load
- LV-MOSFETs (1200V) causing substantial losses
- Efficiency improvement possible with 900V or 650V SiC
- 3.8kW/dm³ (box volume)

Conclusion & Outlook

10kV SiC for SSTs Future Research Areas

► Si Multi-Cell vs. SiC Single Stage

	F- Fuji Electric	ETH zürich
Input	2.4kV AC	3.8kV AC
Output	54V DC	400V DC
Power	25kW	25kW
Cells	5x	1x
Technology	LV Si	HV SiC
Semiconductors	100x	10x
Transformer	10x	1x
Density	0.4-0.8 kW/dm ³	1.8 kW/dm ³
Efficiency	96.0%	98.1%

- **LV Si / multi-cell:** state of the art & still competitive
- **HV SiC / single-cell:** simpler structure, compact, efficient

Conclusion & Outlook

HV SiC FETs (6.5..15kV)

- Low conduction losses
- Low ZVS switching losses
- ZVS is not loss-free
- MF transformer
 - Optimal frequency is not infinity
 - Design space diversity
 - Electrical insulation at MF is critical

HV SiC allows simpler converter structure

■ HV SiC allows extreme efficiency / volume

Industrialization of HV SiC technology

- Reliability / availability
- Protection (short-circuit, lightning)
- Toward higher voltages (30..60kV)
 - Modular structures
 - Series connection

▼ 10kV SiC-based SST

▼ 40kV FCC Half-Bridge

Thank You!

