

Power Electronics Integration Economic/Technological/Environmental Benefits & Barriers

Johann W. Kolar & Jonas Huber

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Sept. 9, 2024

Acknowledgment

J. Azurza F. Krismer J. Schäfer

Integration Drivers/Levels/Categories

- **Power Electronics** Def. Interconnection of Active & Passive Power Components / Sensors / Signal Electronics etc. Market Pull Lower Costs / Lower Functional Volume / Lower Losses / Higher Reliability

- Material-Level | Component-Level | Topology-Level | Modulation & Control-Level | Package-Level | System-Level "Functional" Integr. & "Embedding" Enables Massive Performance Improvements / Hardware & Signal Layer

"Material-Level" Integration

Application-Specific Composites Combining Favorable Properties of Individual Materials, incl. 3D-Grading

• Low Permeability & High Heat Conductivity Material \rightarrow Magnetic Integr. of Inductors into Transformers

"Component-Level" Integration

- Monolithic Integration of MOSFET & Bipolar Junction Transistor → IGBT
 Monolithic Integration of Inverse-Series Connected MOSFETs → "True"
- \rightarrow "True" M-BDS

• IGBT — Higher Blocking Voltages (Cond. Modulation) / Minority Carrier Inj. \rightarrow Tail Current/Sw. Losses • M-BDS — Lower Chip Area \rightarrow Higher Thermal Stress (4x $A_{chip} \rightarrow A_{chip}$ BUT $R_{th} \rightarrow 4x R_{th}$)

IEEE POWER ELECTRONICS SOCIETY

"Topology-Level" Integration

- Isolated Three-Port DC/DC Converter Employing a Single Transformer / Future EV DC Power Distribution
- Charge Mode PFC \rightarrow HV | Drive Mode HV \rightarrow LV

• High Power Density | High Design & Control Complexity & Higher Stresses for Wide Inp./Output Range

IEEE POWER ELECTRONICS SOCIETY

"Control-Level" Integration

Synergetic Control of Two-Stage Converters → Quasi-Single-Stage Isolated AC/DC Conversion
 DC/DC Converter Utilized for Control of Two Mains Phase Currents by DC-Link Voltage Shaping

Sector] 400 **Dual Active Bridges** AC/DC Vienna Rectifier (DABs) ★ 10 kW/dm³ -50120 180240300 360 0 60 120 240300 360 60 180 ωt (°) ωt (°)

• Lower Sw. & Cond. Losses | High Control/Commissioning Complexity & No Passive Load-Step Buffering

"Converter-Level" (Heterogeneous) Integration 1/2

- Three-Phase DC/AC Converter Intelligent Power Modules (IPMs) \rightarrow HVAC, Pumps, Fans, Servo Drives
- Dual-in-Line Package w/ DBC Substrate Pad for Cooling

- All-in-One (Inv. Stage, High-Side & Low-Side Gate Drivers, UV Lockout, Temp. Monitoring) / Shrinks BOM Pin-to-Pin Compatibility w/ Competitor Products Mandatory (2nd Source) Standardization (?) & Recycling (?)

Power Elect Laboratory

Power Electronic Systems

IEEE POWER

"Converter-Level" (Heterogeneous) Integration 2/2

- System in Package (SiP) Approach Isol. & Non-Isol. DC/DC Converters, PFC Rectifiers, etc. Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management

- Extreme Power Density / Shrinks BOM Automated Manufacturing / High Reliability High \$\$\$ / 2nd Source (?) / Recycling (?)

ETH zürich

"System-Level" (Hybrid) Integration

- Motor & Inverter Integration for Future More-Electric Aircraft / eVTOL & Electric Vehicles "Embedded" Power Electronics

- Increasing Level of Integration \rightarrow High Torque/Power Density @ Increasing Thermal & Mechanical Stresses Limited Maintainability / Different Subsystem Lifetimes / No 2nd Source \rightarrow Radial Outward Placement for EV ۲

Integration — Benefits & Barriers

- Integration is Inherent to Innovation (Theory of Inventive Problem Solving)
- Economic / Technological & Technical / Environmental Aspects

- Elimination of Components & Interfaces
- Lower Commutation Loop Inductance / Parasitics
- Fully Automated Manufacturing
- Hidden Complexity to the User
- Higher Internal Complexity / Higher "Entropy"
 High Compactness & Complex Material Mix
- Close Proximity of Power & Signal Components Lower Number of Active Devices
- Highly Dedicated Functionality

- \rightarrow Lower Functional Volume & Raw Material Use
- \rightarrow Higher Conv. Efficiency
- \rightarrow Lower Costs / Higher Quality & Reliability
- \rightarrow Plug & Play
- \rightarrow Limited Repairability
- \rightarrow Limited Critical Raw Mat. Recoverability
- \rightarrow Higher Thermal & Mechanical Stresses & EMI Levels
- \rightarrow Higher Control Complexity / Limited Control DOFs
- \rightarrow Limits to Econ. of Scale / No 2nd Source

Environmental Aspects / Regaining Critical Raw Materials will be of Paramount Future Importance (!)

Future Research Areas

- Vertical Power Delivery for Clustered AI Processors 100kA @ 0.75V
 Med.-Voltage/Frequ. High-Power SSTs for Ultra-Fast EV Charging, Datacenters, H₂ Production, MVDC Grids etc.
- Monolithic Integration

"There is Plenty of Room at the Bottom"

- *"There's Plenty of Room at the Bottom" (R. Feynman, Caltech, 1959) & There is Plenty of Room at the Top Key Importance of Technology Partnerships of Academia & Industry*

Monolithic 3D-Integration

■ 3x3 Three-Phase AC/AC Matrix Conv. — 9 GaN M-BDSs w/ Isol. Drive-By-Microwave (DBM) Technology

• Ultra Compact \rightarrow 25 x 18 mm² (600V, 10A - 5kW Motor)

Source: Panasonic ISSCC 2014

Medium-Voltage Intelligent PEBBs

- Half-Bridge Intelligent MV Power Electronics Building Blocks (i-PEBBs) w/ Integrated Output Inductor Realization of MMLCs or in Direct Series Connection / Isol. Coord. for 20+ kV DC-Link

- 6kV Multi-Layer PCB DC-Bus | Gate Driver for 100V/ns Sw. Speed | PCB Rogowski Coil Sw. Curr. Sensing / Protection
 Local Controller & Voltage/Current Sensors | Wireless Aux. Supply | Curr. Loop GD Supply | Temp. Sensing etc.

Power Electronic Systems Laboratory

- Global Population by 2050 10bn 100 2.5 kW/Capita
 25'000 GW Installed Ren. Generation in 2050
- 4x Power Electr. Conversion btw Generation & Load
- **100'000 GW** of Installed Converter Power
- **20 Years** of Useful Life

5'000 GW_{eq} = 5'000'000'000 kW_{eq} of E-Waste / Year (!)
 10'000'000'000 \$ of Potential Value

- Monolithic Integration
- Medium-Voltage / High Power i-PEBBs
 New Multi-Domain Coupled Modeling & Design Tools
 Novel Test & Measurement Systems
 Design for Circularity of Critical Raw Materials
 Smart Hybrid Systems / Sector Coupling

