

Minimum Loss Operation of High Frequency Inductors

Presentation Grenoble, France, Wednesday 19th of February, 2020 **Pantelis Papamanolis**, T. Guillod, F. Krismer and J. W. Kolar

Power Electronic Systems Laboratory, ETH Zurich, Switzerland

System-level approach

ETH zürich

1/26 -

System-level approach

▲ DC/DC Buck converter

ETH zürich

Choosing the remaining DOF System DOF Component DOF

- Component level difficulties
 - Design/Performance space diversity
 - Complex interactions between components
 - Large number of design variables

State-of-the-art characterization of magnetic components

▲ Transformer

Performance factor:

Performance factor incl. winding losses:

Performance factor incl. dc bias:

What is missing?

- Effect of fringing field on the copper losses (air-gap)
- **Temperature** sensitivities (core & coil)
- **DC-bias** effect on the core losses
- Winding turns' packing
- Optimal operating condition of filter inductor?

ETH zürich

Component-level approach

DC/DC Buck converter

Specifications:

$$V_{in} = 400 \$$

$$d = 50\%$$

- Power Inductor losses investigation
- Concept can be extended to more complex topologies

▲ DC/DC Buck converter

GaN

Component-level approach

Design space (System DOF)

- Switching frequency (f)
- Current ripple (r)

Elimination of further influences by considering:

- Constant magnetic core : E55/28/21 Ferrite N87
- Constant type of coil : Litz wire 100μm
- Sinusoidal HF excitation + DC bias

Constant power, i.e., constant power density

AC excitation

5/26 -

Component-level approach

- Different models employed
 - Simplified analytic model
 - Employment of an Electromagnetic Thermal (EMT) coupled model
- Investigation of the following matters:
 - Optimal switching frequency
 - Reasonable range of operation
 - Important influencing parameters

ETH zürich

Provided a core, what are the best operating conditions of the component?

Brief Outline

- Scaling laws / simplified evaluation
- Electromagnetic-thermal coupled model (EMT)
- Analysis of identified losses
- Experimental verification
- Identified bottleneck & extension to advanced HF materials
- Practical design guidelines

Investigation based on analytic models

Core losses

(General Steinmetz Equation) $P_{\text{core}} = \text{Vol } k f^{\alpha}_{\text{sine}} B^{\beta}_{\text{ac}}$

Coil losses

(dc + skin/proximity effect ac losses) $P_{coil} = R_{dc} i_{dc}^2 + R_{dc}(F_R i_{ac,pk}^2 + N_{strand}^2 G_R H_{s,rms,pk}^2)$

- Simplified H-field calculation
- Constant Steinmetz parameters
- Temperature dependency disregarded

9 Optimum ripple (i.e., Lopt) @Nopt ≈ Nsat

Investigation based on analytic models

ElectroMagnetic – Thermal (EMT) Model

Implemented in MATLAB

Core losses calculation:

- General Steinmetz Equation GSE
- Premeasured/Tabulated Steinmetz coefficients considering the effects of B_{ac}, B_{dc}, f, T
- Winding losses calculation:
 - Ferreira Bessel functions
 - H-field estimation using the mirroring method
- Reluctance model

ETH zürich

- Accurate airgap and flux DC-bias definition
- ► 3D airgap reluctance calculation
- Detailed thermal model
- EMT coupling iteratively until temperature convergence

Analytic approach

- Specifications
 - ▶ $V_{in} = 400 V$ ▶ $V_{out} = 200 V$ ▶ d = 50 %▶ P = 2 kW

Semi-numeric approach using EMT model

Considered ripple and frequency ranges:
 Switching frequency (f): 50kHz ... 1MHz
 Current ripple pk-pk (r): 2% ... 200%

▲ Current ripple definition

Analytic approach

- Specifications
 - $V_{out}^{in} = 400 V$ $► V_{out}^{in} = 200 V$ ► d = 500 VΡ = 2 kW

Semi-numeric approach using EMT model

Considered ripple and frequency ranges: Switching frequency (*f*): 50kHz ... 1MHz

Current ripple pk-pk (*r*): 2% ... 200%

▲ Current ripple definition

Local optimization of individual operating points (E55/28/21, N87 – d_{strand} = 100µm)

ETH zürich

Analysis of identified losses

Local optimization of individual operating points (E55/28/21, N87 – d_{strand} = 100µm)

12/26

ETHzürich

Analysis of identified losses

Local optimization of individual operating points (E55/28/21, N87 – $d_{strand} = 100 \mu m$)

ELFE

Complete *f*-*r* **domain investigation** (E55/28/21, N87 – d_{strand} = 100µm)

Regions identified:

1. Optimal design region

2. Thermally valid –

- suboptimal designs
- 3. Exceedingly high **HF** losses

4. Exceedingly high **LF** losses

 $\blacksquare P_2 \approx 30\% P_1$

Trajectories of interest:
 1. r_a: optimal r, f pairs

 $r_{\rm a}(f) \approx \frac{1}{\left(\frac{f}{50 \rm kHz}\right)}$ Constant Inductance

2. *r*_b : constant frequency, ripple sensitivity

Optimal trajectory r_a

ETH zürich

- Constant L
- **Flat behavior for** $f \in [300, 750]$ kHz
- Basic scaling laws

 $P_{\rm core} \propto f^{\alpha-\beta}$

 $P_{\text{coil,HF}} \propto R_{dc} \frac{G_R H_{pk,HF}^2}{\Box \propto f^{-2}} \propto 1$

With $f \uparrow \Rightarrow \begin{cases} N \downarrow, \text{ if } \alpha < \beta & \text{ such that:} \\ N \uparrow, \text{ if } \alpha \ge \beta & P_{\text{core}} \approx P_{\text{coil}} \end{cases}$

- **Global opt** @f = 500 kHz, where $\alpha \approx \beta$
- Summary regarding opt. designs:
 - **Balanced copper/core** losses
 - ► **B**_{pk} close to **B**_{sat}

15/26

- $\blacktriangleright \text{ High } L \to \text{ High } N \to \text{ High } J$
- ► **B**_{pk} limited by **B**_{sat}
- High DC copper losses
- Region 3 (20% ≥ r)
 ▶ Increasing AC losses
- **Region 2 (** $8\% \le r < 20\%$)
 - ► Flat behavior!
 - Further details \rightarrow P. Papamanolis, APEC 2018

Experimental verification

Measurement setup

- Operating principle
 - Step 1: DUT disabled
 - @ steady state (i.e. $T_{in,amb} = T_{set}$). [$P_{heater} = P0$]
 - Step 2: DUT enabled. Controller adapts

 [P_{heater} = P1] to preserve constant T_{in}.

 P_{DUT} = P0 P1

Ref.chamber Calorimeter DUT supply ϑ ϑ θ_{ref} Temp ctrl. θ_{ref} Temp ctrl.

▲ Calorimetric meas. setup [Kleeb 2013]

▲ Simplified schematic

Properties of measurement method

- + No calibration required
- + High accuracy at low loss measurements
- + Measurement at desired "ambient" temperature
- Large time constants because of the DUT
- Increased complexity

Experimental verification DUT considered

- Single inductor design
 - ► Core: E55/28/21
 - ▶ **Litz wire** 900×100µm
 - **L** = 167 μH

ETH zürich

- N = 16 (2 layers x 8 turns)
- Total air-gap: 800μm (400μm per leg)
- Resonance freq @ 2.5 MHz

▲ Impedance measurement of DUT

• Compromise between optimal designs for $f \in [200 \text{ kHz}, 750 \text{ kHz}]$

▲ Picture of DUT

Experimental verification Measurements

Same trend

- Underestimation observed, up to 0.5 Watts (error below 25%), reasons:
 - Core-loss data interpolation for f > 270 kHz
 - ► Conductor close to air-gap → intense fringing field losses

• According to prev. scaling laws for N = const. $P_{\text{core}} \propto f^{\alpha-\beta}$

$$P_{\text{coil,HF}} \propto R_{dc} \underbrace{G_R H_{pk,HF}^2}_{\square \propto f^2} \propto 1$$

• Minimum @
$$\alpha \approx \beta$$

Measurements

• Main limitation is where $\alpha = \beta$ (This corresponds to the peak of the PF)

GSE:
$$p = k f^{\alpha} B^{\beta} \Rightarrow B = \left(\frac{p}{k}\right)^{\frac{1}{\beta}} f^{-\frac{\alpha}{\beta}}, \qquad PF = Bf = \left(\frac{p}{k}\right)^{\frac{1}{\beta}} f^{\frac{\beta-\alpha}{\beta}} = \text{const. } f^{\frac{\beta-\alpha}{\beta}}$$

- Using existing **performance factor** data, together with the **proposed guideline**, allows for estimation of the **optimal operating points** (r_{opt}, f_{opt}) .
 - Data from TDK-EPCOS
 T = 100 °C
 P_L = 300 kW/m³

- Need of materials with **better PF** \rightarrow Typically achieved at **higher frequencies** \rightarrow At these frequencies **GaN semiconductors** achieve great performance
- Existing electrical methods limited, due to parasitics, intensive calibration and post-process requirements and need for expensive equipment

Measurements

 Acquirement of new data using newly proposed transient calorimetric method from PES ETH-Zurich (presented at APEC 20' – New Orleans)

- Accurate measurement within some tens of seconds
- Knowledge of the cores thermal capacitance required, since: $P_{\text{core}} = C_{\text{th,core}} \frac{\mathrm{d}T_{\text{meas}}}{\mathrm{d}t}$

Proposed methods:

ETH zürich

- Differential Scanning Calorimetry (DSC)
- DC current injection through core block

Measurements

ETH zürich

Concept verification through coupled Magnetic and Heat transfer FEM simulations

Further verification using high accuracy IR thermal imaging

21/26

 $\blacktriangle T_{core} = 34^{\circ}C$

 $\blacktriangle T_{core} = 36^{\circ}C$

Measurements

Application on MnZn ferrite TDK-EPCOS N87/N49 – Comparison to electrical measurements

Application on NiZn ferrite Fair-Rite 67 [5 – 50 MHz]

Conclusions

Conclusion (1) / Practical Guidelines

- Provided magnetic core $\rightarrow f_{opt}$ exists @ $\alpha \approx \beta$ $f > f_{opt} \rightarrow \text{Increases losses}$
- Provided *f*_{opt}, choose *N*_{opt} and *r*_{opt} such that:
 Balanced copper/core losses
 *B*_{pk} close to *B*_{sat}
- Minimum losses correspond to approx. constant L_{opt}

$$L_{\rm opt} = \frac{1}{f_{\rm opt}r_{\rm opt}} \frac{(1-D)DU_{\rm in}}{I_{\rm dc}}$$

For any frequency the optimal current ripple equals:

$$r_{\text{subopt}}(f) = \frac{1}{fL_{\text{opt}}} \frac{(1-D)DU_{\text{in}}}{I_{\text{dc}}}$$

ETH zürich

24/26 -

Conclusion (2) / Observations and Future steps

Useful Observations

- **a** 3 different flat-optima regions of interest (N87 E55/28/21 100μ m):
 - ▶ Provided f & r with respect to N. e.g. $N \in [19, 31]$ @ f = 80 kHz, r = 85%
 - Provided L with respect to f. e.q. $f \in [300 \text{ kHz}, 750 \text{ kHz}]$ @ L = 167 μ H

 - ▶ Provided f with respect to r. e.g. $r \in [8\%, 20\%]$ @ f = 500 kHz

Experimental Verification

- Total losses measurement using steady-state calorimeter
- Measurement of core-losses and PF evaluation using transient calorimetric measurement (Further details at APEC 2020 – New Orleans)

Discussion...

Further application

ETH zürich

- Different litz wire strand diameter
 - ≥ 200µm: d_{strand} ↑→ F_R, G_R ↑ → P_{Cu,ac} ↑
 > 71µm : d_{strand} ↓→ F_R, G_R ↓ → P_{Cu,ac} ↓
 > P_{Cu,dc} → const. due to similar fill factor (k)

- Different core: E42/21/20
 - Area of valid designs narrower
 - Operation @f_{low} thermally invalid

27/26 -

Experimental verification

Measurement setup

- Calorimeter consists of 2 boxes
 - Inner enclosure (temp. sensors, heater, DUT)
 - Outer enclosure (reference chamber)
- Heater control unit (preserve temperature)
- DUT excitation circuit
- Operating principle
 - Step 1: DUT disabled
 @ steady state (i.e. T_{in,amb} = T_{set}). [P_{heater} = P0]
 - Step 2: DUT enabled. Controller adapts
 [*P*_{heater} = *P*1] to preserve constant *T*_{in}.
 *P*_{DUT} = *P*0 *P*1

Properties of measurement method

- + No calibration required
- + Measurement at desired "ambient" temperature

•••

- + High accuracy at low loss measurements
- Large time constants because of the DUT
- Increased complexity

ETH zürich

▲ Calorimetric meas. setup [Kleeb 2013]

▲ Simplified schematic

