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•

•

•

Topology

• IGBT, MOSFET ..
• Chip area
• E-core, ETD-core..
• Ferrite, Iron ..
• Round, Litz ..

etc

• Switch. Freq fsw
• Current ripple r
• In capacit. Cin
• Out capacit. Cout
• Filter Induct L

etc

Motivation / Scientific contribution

1

System-level approach

Specs:
DC/DC
Vin = 400V
Vout = 200V
P = 2kW
EMI Class B
…

System DOF Component DOF
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Motivation / Scientific contribution
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System-level approach

Pareto Frontier

▲DC/DC Buck converter

▲Multi-objective Optimization

Component level difficulties
►Design/Performance 

space diversity
► Complex interactions

between components
► Large number of 

design variables

Choosing the remaining DOF
►System DOF
► Component DOF
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Motivation / Scientific contribution
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What is missing?

State-of-the-art characterization of magnetic components

▲Transformer ▲Resonance Inductor ▲DC/AC Inductor

Performance factor:

Performance factor incl. winding losses:

Performance factor incl. dc bias:

► Effect of fringing field on the copper losses (air-gap)

► Temperature sensitivities (core & coil)

► DC-bias effect on the core losses

► Winding turns’ packing

𝑃𝑃𝑃𝑃 = 𝐵𝐵pk𝑓𝑓
𝑃𝑃𝑃𝑃w = 𝐵𝐵pk𝑓𝑓w

𝑃𝑃𝑃𝑃dc = 𝑓𝑓𝐵𝐵ac𝐵𝐵dc

@ Constant
surface temperature

Optimal operating condition of filter inductor?
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Motivation / Scientific contribution

4

Specifications:
► Vin = 400 V
► Vout = 200 V
► d = 50 %
► P = 2 kW

▲DC/DC Buck converter

DC/DC Buck converter

Component-level approach

Power Inductor losses investigation

Concept can be extended 
to more complex topologies
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Motivation / Scientific contribution
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Design space (System DOF)
► Switching frequency (f)
► Current ripple (r) ▲ f – r plane

Component-level approach

Elimination of further influences by considering:
► Constant magnetic core : E55/28/21 – Ferrite N87
► Constant type of coil : Litz wire – 100μm
► Sinusoidal HF excitation + DC bias
► Constant power, i.e., constant power density

▲E55/28/21

▲ AC excitation
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Motivation / Scientific contribution
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Component-level approach

Investigation of the following matters:
► Optimal switching frequency
► Reasonable range of operation
► Important influencing parameters

In other words:

Provided a core, what are the best operating conditions of the component?

Different models employed
► Simplified analytic model
► Employment of an Electromagnetic – Thermal (EMT) 
coupled model
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Brief Outline
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Electromagnetic-thermal coupled model (EMT)

Analysis of identified losses

Identified bottleneck & extension to advanced HF materials

Scaling laws / simplified evaluation

Experimental verification

Practical design guidelines
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Investigation based on analytic models
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Core losses
(General Steinmetz Equation)

Constant Steinmetz parameters

Temperature dependency 
disregarded

Simplified H-field calculation

𝑃𝑃core = Vol 𝑘𝑘 𝑓𝑓sine𝛼𝛼 Βac
𝛽𝛽

Coil losses
(dc + skin/proximity effect ac losses)

𝑃𝑃coil = 𝑅𝑅𝑑𝑑𝑑𝑑 𝑖𝑖𝑑𝑑𝑑𝑑2 +
𝑅𝑅𝑑𝑑𝑑𝑑(𝑃𝑃𝑅𝑅𝑖𝑖𝑎𝑎𝑑𝑑,𝑝𝑝𝑝𝑝

2 + 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑑𝑑2 𝐺𝐺𝑅𝑅𝐻𝐻𝑠𝑠,𝑠𝑠𝑟𝑟𝑠𝑠,𝑝𝑝𝑝𝑝
2 )

Optimum ripple (i.e., Lopt) @Nopt ≈ Nsat
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Investigation based on analytic models
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With increasing f ↑ → iopt ↓

With increasing f ↑ → Ptot ↓

From analytical calculations:

𝐿𝐿opt ∝ 𝑓𝑓sine

𝛼𝛼−𝛽𝛽
2+𝛽𝛽

With increasing f ↑ → α ↑
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ElectroMagnetic – Thermal (EMT) Model

10

Implemented in MATLAB 

Core losses calculation:

Winding losses calculation:

► General Steinmetz Equation – GSE
► Premeasured/Tabulated Steinmetz coefficients 

considering the effects of Bac, Bdc, f, T

► Ferreira – Bessel functions
► H-field estimation using the mirroring method

Reluctance model
►Accurate airgap and flux DC-bias 
definition
►3D airgap reluctance calculation

Detailed thermal model

EMT coupling iteratively until temperature 
convergence

▲Winding losses ▲Core losses

▲Thermal model
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► For each r – f pair L is defined from:

► Remaining DOF the number of turns (N)

► Local optimization wrt N

Analysis of identified losses

11

Analytic approach

Semi-numeric approach using EMT model
► Considered ripple and frequency ranges:

Switching frequency (f): 50kHz … 1MHz

Current ripple pk-pk (r): 2% … 200%

𝐿𝐿 𝑓𝑓, 𝑟𝑟 =
1
𝑓𝑓𝑟𝑟

1 − 𝐷𝐷 𝐷𝐷𝑈𝑈in
𝐼𝐼dc

𝑟𝑟 =
𝐼𝐼AC,pk−pk

𝐼𝐼dc
▲Current ripple definition

► Vin = 400 V
► Vout = 200 V
► d = 50 %
► P = 2 kW

Specifications



/26

Analysis of identified losses

11

Analytic approach

Semi-numeric approach using EMT model
► Considered ripple and frequency ranges:

Switching frequency (f): 50kHz … 1MHz

Current ripple pk-pk (r): 2% … 200%

r : 85 %
f : 80 kHz

r : 8 %
f : 500 kHz

𝑟𝑟 =
𝐼𝐼AC,pk−pk

𝐼𝐼dc
▲Current ripple definition

► Vin = 400 V
► Vout = 200 V
► d = 50 %
► P = 2 kW

Specifications
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Analysis of identified losses

12

Local optimization of individual operating points (E55/28/21, N87 – dstrand = 100μm)

r : 85 %, f : 80 kHz

L = 147μH

r : 8 %, f : 500 kHz

L = 250μH
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Analysis of identified losses

12

Local optimization of individual operating points (E55/28/21, N87 – dstrand = 100μm)

r : 85 %, f : 80 kHz

L = 147μH

r : 8 %, f : 500 kHz

L = 250μH
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Analysis of identified losses

12

Local optimization of individual operating points (E55/28/21, N87 – dstrand = 100μm)

r : 85 %, f : 80 kHz

L = 147μH

r : 8 %, f : 500 kHz

L = 250μH

𝑃𝑃tot 𝑁𝑁 ≈ 𝑃𝑃coil,25
𝑁𝑁
25

2
+ 𝑃𝑃core,25

𝑁𝑁
25

−𝛽𝛽
, where 𝑃𝑃coil,25≈ 𝑃𝑃core,25 ≈

𝑃𝑃tot,25
2
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Analysis of identified losses
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Complete f-r domain investigation (E55/28/21, N87 – dstrand = 100μm)

1. ra : optimal r, f pairs
Trajectories of interest:

𝑟𝑟a 𝑓𝑓 ≈
1
𝑓𝑓

50kHz
Constant Inductance

1. Optimal design region
Regions identified:

2. Thermally valid –
suboptimal designs
3. Exceedingly high HF 
losses
4. Exceedingly high LF 
losses

2. rb : constant frequency, 
ripple sensitivity

𝑃𝑃2 ≈ 30% 𝑃𝑃1𝑃𝑃2

𝑃𝑃1
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Analysis of identified losses

14

Optimal trajectory ra

Constant L

𝑃𝑃core ∝ 𝑓𝑓𝛼𝛼−𝛽𝛽
Basic scaling laws

𝑃𝑃coil,HF ∝ 𝑅𝑅𝑑𝑑𝑑𝑑𝐺𝐺𝑅𝑅𝐻𝐻𝑝𝑝𝑝𝑝,𝐻𝐻𝐻𝐻
2

∝ 𝑓𝑓2
∝ 𝑓𝑓−2 ∝ 1

With 𝑓𝑓 ↑ ⇒�𝑁𝑁 ↓, if 𝛼𝛼 < 𝛽𝛽
𝑁𝑁 ↑, if 𝛼𝛼 ≥ 𝛽𝛽

Flat behavior for 𝑓𝑓 ∈ 300, 750 kHz

Global opt @𝑓𝑓 = 500 kHz, where 𝛼𝛼 ≈ 𝛽𝛽
Summary regarding opt. designs:
► Balanced copper/core losses
► Bpk close to Bsat

𝛼𝛼 > 𝛽𝛽𝛼𝛼 < 𝛽𝛽

such that:
𝑷𝑷𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 ≈ 𝑷𝑷𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
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Analysis of identified losses

15

f = 500 kHz trajectory rb

3 distinct Regions

Region 3 ( 20% ≥ r )
► Increasing AC losses

3

Region 1 ( r < 8% )
► High L → High N → High J
► Bpk limited by Bsat

► High DC copper losses

1

Region 2 ( 8% ≤ r < 20% )
► Flat behavior!
► Further details → P. Papamanolis, APEC 2018

2
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Experimental verification

16

Measurement setup

▲Calorimetric meas. setup [Kleeb 2013]

+ No calibration required
+  High accuracy at low loss measurements
+ Measurement at desired “ambient” temperature
- Large time constants because of the DUT
- Increased complexity

Properties of measurement method

▲Simplified schematic

▲Measurement example

►Step 1: DUT disabled
@ steady state (i.e. Tin,amb = Tset).  [ Pheater = P0 ]

►Step 2: DUT enabled. Controller adapts 
[ Pheater = P1 ] to preserve constant Tin.

►PDUT = P0 – P1

Operating principle
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Experimental verification

17

DUT considered

Single inductor design

▲Impedance measurement of DUT

▲Picture of DUT

► Core: E55/28/21
► Litz wire – 900x100μm
► L = 167 μH
► N = 16 (2 layers x 8 turns)
► Total air-gap: 800μm (400μm per leg)
► Resonance freq @ 2.5 MHz

Compromise between optimal designs for fϵ[200kHz, 750kHz]

2.5M
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Experimental verification

18

Measurements

Same trend

▲Model evaluation VS Measurement

Underestimation observed, up to 0.5 Watts 
(error below 25%), reasons:
► Core-loss data interpolation for f > 270 kHz
► Conductor close to air-gap → intense 

fringing field losses

@ 𝛼𝛼 ≈ 𝛽𝛽

Minimum @ α ≈ β

0.5 W

▼ E42/21/20▼ E55/28/21

According to prev. scaling laws for
N = const.

𝑃𝑃core ∝ 𝑓𝑓𝛼𝛼−𝛽𝛽

𝑃𝑃coil,HF ∝ 𝑅𝑅𝑑𝑑𝑑𝑑𝐺𝐺𝑅𝑅𝐻𝐻𝑝𝑝𝑝𝑝,𝐻𝐻𝐻𝐻
2

∝ 𝑓𝑓2
∝ 𝑓𝑓−2 ∝ 1



/26

Extension to further materials

19

Measurements
Main limitation is where α = β (This corresponds to the peak of the PF)

GSE: 𝒑𝒑 = 𝒌𝒌 𝒇𝒇𝜶𝜶𝜝𝜝𝜷𝜷 ⇒ 𝜝𝜝 = 𝒑𝒑
𝒌𝒌

𝟏𝟏
𝜷𝜷 𝒇𝒇−

𝜶𝜶
𝜷𝜷, 𝑷𝑷𝑷𝑷 = 𝑩𝑩𝒇𝒇 = 𝒑𝒑

𝒌𝒌

𝟏𝟏
𝜷𝜷 𝒇𝒇

𝜷𝜷−𝜶𝜶
𝜷𝜷 = const. 𝒇𝒇

𝜷𝜷−𝜶𝜶
𝜷𝜷

Using existing performance factor data, together with the proposed guideline, allows for 
estimation of the optimal operating points (ropt, fopt).

► Data from TDK-EPCOS
► T = 100 °C
► PL = 300 kW/m³

Need of materials with better PF → Typically achieved at higher frequencies →
At these frequencies GaN semiconductors achieve great performance

Existing electrical methods limited, due to parasitics, intensive calibration and post-process
requirements and need for expensive equipment
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Acquirement of new data using newly proposed transient calorimetric method from 
PES ETH-Zurich (presented at APEC 20’ – New Orleans)

Accurate measurement within some tens of seconds

Knowledge of the cores thermal capacitance required, since:

Proposed methods:
► Differential Scanning Calorimetry (DSC)
► DC current injection through core block

Extension to further materials

20

Measurements

𝑃𝑃core = 𝐶𝐶th,core
d𝑇𝑇meas

d𝑡𝑡
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Extension to further materials

21

Measurements
► Concept verification through coupled Magnetic and Heat transfer FEM simulations

► Further verification using high accuracy IR thermal imaging

▲Flux density ▲Loss density ▲Temperature 
distribution

▲Stored energy 
distribution

▲Tcore = 30°C ▲Tcore = 34°C ▲Tcore = 36°C
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Extension to further materials

22

Measurements
► Application on MnZn ferrite TDK-EPCOS N87/N49 – Comparison to electrical measurements

► Application on NiZn ferrite Fair-Rite 67 [5 – 50 MHz]
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Conclusions
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► Balanced copper/core losses
► Bpk close to Bsat

For any frequency the optimal current ripple equals:

Provided fopt, choose Nopt and ropt such that:

Provided magnetic core → fopt exists @ α ≈ β
f > fopt → Increases losses

𝑟𝑟subopt(𝑓𝑓) =
1

𝑓𝑓𝐿𝐿opt
1 − 𝐷𝐷 𝐷𝐷𝑈𝑈in

𝐼𝐼dc

𝐿𝐿opt =
1

𝑓𝑓opt𝑟𝑟opt
1 − 𝐷𝐷 𝐷𝐷𝑈𝑈in

𝐼𝐼dc

Minimum losses correspond to approx. constant Lopt

Conclusion (1) / Practical Guidelines
@ f = fopt
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3 different flat-optima regions of interest (N87 E55/28/21 – 100μm):
► Provided f & r with respect to N. e.g. N ∈ [ 19, 31 ]   @ f = 80 kHz, r = 85%
► Provided L with respect to f. e.g. f ∈ [ 300 kHz, 750 kHz]  @ L = 167 μH
► Provided f with respect to r. e.g. r ∈ [ 8%, 20% ]  @ f = 500 kHz

Conclusion (2) / Observations and Future steps

► Total losses measurement using steady-state calorimeter
► Measurement of core-losses and PF evaluation using transient calorimetric measurement

(Further details at APEC 2020 – New Orleans)

Useful Observations

Experimental Verification
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Discussion…

26
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Analysis of identified losses

27

▲Litz wire diameter: 71μm

▲Litz wire diameter: 200μm

Different litz wire strand diameter
► 200μm: dstrand ↑→ FR, GR ↑ → PCu,ac ↑
► 71μm  : dstrand ↓→ FR, GR ↓ → PCu,ac ↓
► PCu,dc → const. due to similar fill factor (k)

Different core: E42/21/20
► Area of valid designs narrower
► Operation @flow thermally invalid

▲E42/21/20 – 100μm

E55/28/21

100μm

100μm

Further application
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Experimental verification

28

Measurement setup

► Inner enclosure (temp. sensors, heater, DUT)
► Outer enclosure (reference chamber)

Calorimeter consists of 2 boxes

▲Calorimetric meas. setup [Kleeb 2013]

►Step 1: DUT disabled
@ steady state (i.e. Tin,amb = Tset).  [ Pheater = P0 ]

►Step 2: DUT enabled. Controller adapts 
[ Pheater = P1 ] to preserve constant Tin.

►PDUT = P0 – P1

Operating principle

+ No calibration required
+ Measurement at desired “ambient” temperature
+ High accuracy at low loss measurements
- Large time constants because of the DUT
- Increased complexity

Properties of measurement method

▲Simplified schematic

▲Measurement example

Heater control unit (preserve temperature)

DUT excitation circuit
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