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Driving Applications 

● Clean Energy Transition   “All-Electric” Society
● UN Sustainable Development Agenda  There can be No “Plan B”, because there is No “Planet B” (Ban Ki-moon)

Source:     Status of Power 
Electronics Industry
2019 Report 

■ Global MEGA-Trends   Industry Automation | Renewable Energy | Sustainable Mobility | Urbanization  etc.

1
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General Perspective  
■ Power Electronics is Key to Clean Energy Utilization | Automation | etc.   “All-Electric Society”
■ 2019 — 2015 Power Electronics Market Evolution & Main Segments  

● Source – Status of the Power Electronics Industry 2020 Report  

2
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Performance Indicators / Trends 

[kgFe /kW] 
[kgCu /kW]
[kgAl /kW]
[cm2

Si /kW]

►

►

Environmental Impact…

•  Power Density   [kW/dm3]
•  Power per Unit Weight  [kW/kg]
•  Relative Costs    [kW/$]
•  Relative Losses  [%]
•  Failure Rate    [h-1]

•  Manufacturability 
•  Recyclability / Sustainability
•  Networked / IIoT

3
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Increasing E-Waste Problem
■ 53´000´000 Tons of Electronic Waste Produced Worldwide in 2019  74´000´000 Tons in 2030
■ Large Proportion Ends up in Africa & China  Melting of PCBS & Cables etc. / Hazardous Substances 
■ Increasingly Complex Constructions  No Repair or Recycling  

● Growing Global E-Waste Streams   Increasing Attention of the Public / Upcoming Regulations

Source: 

Source: 

4
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S-Curve of Power Electronics

Power MOSFETs & IGBTs
Circuit Topologies

Microelectronics
Modulation Concepts

Control Concepts

Super-Junct. Techn. / WBG
Digital Power

Modeling &  Simulation

2025
2015

►

►
►

SCRs / Diodes 
Solid-State Devices

■

►

►

1958

4.0

3.0

2.0

1.0

Performance 

■ « X-Technologies » / “Moon-Shot” Technologies  
■ « X-Concepts »  Full Utilization of Basic Scaling Laws & « X-Technologies »
■ Power Electronics 1.0  Power Electronics 4.0
■ 2…5…10x Improvement NOT Only 10% !

« X-Technologies »
« X-Concepts »

5
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SiC | GaN 
3D-Packaging & Integration

Digital Signal Processing 
Energy Storage

X-Technologies
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SiC|GaNX-Technology
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■ Higher Critical E-Field of SiC  Thinner Drift Layer
■ Higher Maximum Junction Temperature Tj,max

● Massive Reduction of Relative On-Resistance  High Blocking Voltage Unipolar Devices 






For 1kV:



6
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Source: 

● High-Voltage Unipolar (!) Devices   Excellent Switching Performance 

■ SiC MOSFETs / GaN HEMTs (Monolithic AC-Switch)
■ Low Conduction Losses & ZVS
■ High Efficiency








VB (V)

7

Low R*   High-Voltage Devices  DS(on)



/ 63

Si vs. SiC
■ Si-IGBT / Diode    Const. On-State Voltage, Turn-Off Tail Current  &  Diode Reverse Recovery Current  
■ SiC-MOSFET     Massive Loss Reduction @ Part Load  BUT  Higher Rth

1200 V  100 A
Die Size:  25.6 mm2

1200 V  100 A
Die Size:  98.8 mm2 + 39.4 mm2

6x Si-IGBT 
6x Si-Diode 

Source:  Cree

Source:  
ATZ elektronik
2018

6x SiC-MOSFET 

● Space Saving of  >30% on Module Level (!)

8
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Si vs. SiC Switching Behavior 

● Extremely High  di/dt & dv/dt  Challenges in Packaging / EMI 

■ Si-IGBT           Const. On-State Voltage Drop / Rel. Low Switching Speed, 
■ SiC-MOSFETs   Resistive On-State Behavior / Factor 10 Higher Sw. Speed

1200V  100A
Die Size:  25.6mm2

1200V  100A
Die Size: 98.8mm2 + 39.4mm2

Source:  CreeSource:  Infineon

Source: Fuji Electric

9
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■ Program — Based on Infineon’s CoolGaN™ HEMT Technology 
■ Dual-Gate Device / Controllability of Both Current Directions 
■ Bipolar Voltage Blocking Capability  |  Normally-On or -Off

● Analysis of 4-Quardant Operation of RDS(on)= 140mΩ | 600V Sample @ ± 400V

Monolithic 600V GaN Bidirectional/Bipolar Switch  

Source:

10
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Example of 3-Level T-Type Inverter  

■ Utilization of  600V Monolithic Bidirectional GaN Switches 
■ 2-Gate Structure Provides Full Controllability 

● Factor 4 (!) Reduction of Chip Area vs. Discrete Realization

!

11


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3D-Packaging /
IntegrationX-Technology
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■ Extremely High  di/dt
■ Commutation Loop Inductance LS
■ Allowed Ls Directly Related to Switching Time ts   




● Advanced Packaging  & Parallel Interleaving for Partitioning of Large Currents (Z-Matching)

Circuit Parasitics





Parallel
Connection

12
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3D-Packaging / Heterogeneous Integration 
■ System in Package (SiP) Approach
■ Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management
■ Very High Power Density (No Bond Wires / Solder / Thermal Paste)
■ PCBs Embedded Optic Fibres
■ Automated Manufacturing
■ Recycling (?) 

● Future Application Up to 100kW (!)
● New Design Tools   &   Measurement Systems (!)
● University / Industry Technology Partnership (!)





Source:   

13
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High-Power PCB-Embedding Technology

● 800V DC-Link Bidirectional 100kW SiC DC/DC-Converter (24 x 18 x 1.7cm) 

■ PCB Integr. of SiC Chips / Passives / Sensors etc.  PCB Design Software / Custom Design / Low $$$
■ 3D-Vertical Multilayer Structure  Ultra-Low Comm. & Gate Loop Ind. < 1nH / Low Sw. Losses & EMI
■ Multi-Functional Use of Busbars  DC Supply  & 2-Side Liquid Cooling of SiC Chips
■ Results in Flat Structures (!)  

400um & 35um Cu Layers

≈ 136 kW/dm3

St. Mollov et al., 2019Source: 

3

5

1

6

7

8

9

14

1

7

6
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Future uP Chip-Stack Packaging 
■ Slowing Transistor Node Scaling  Vertical & Heterogeneous Integr. of ICs for Performance Gains 
■ Extreme 3D-Integrated Cube-Sized Compute Nodes 
■ Dual Side & Interlayer Microchannel Cooling   

● Interposer Supporting Optical Signaling / Volumetric Heat Removal / Power Conversion 
EU FP7 Project
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“More Moore” & “More-than-Moore”
■ CMOS-Based Digital Domain for Memory & uP  Technology Driven Miniaturization / “Moore´s Law 
■ Applications  Multi-Funct. Heterogeneous Analog & Mixed-Signal Systems   “More-than-Moore” 
■ Dual Trend  Int. Roadmap for Devices and Systems (ITRS  IRDS, since 2005)

● Development of Generic Appl.-Specific Technology Modules / Technology Platforms  
● Close Analogy to WBG Power Semiconductors & Full Converter Systems 

16



/ 63

Digital Signal /
Data Processing X-Technology



/ 63

Digital Signal & Data Processing 
■ Exponentially Improving uC / Storage Technology (!)

— Extreme Levels of Density / Processing Speed
— Software Defined Functions / Flexibility 
— Continuous Relative Cost Reduction

● Distributed Intelligence  
● Fully Digital Control of Complex Systems – Electrical/Optical/Wireless Signal Transfer
● Massive Comp. Power  Fully Automated AI-Supported Design / Digital Twins / Industrial IoT (IIoT)

Source:  Ostendorf & König /DeGruyter

17

Source:  vario-optics.ch/ 
Electro-Optical PCBs
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● Mapping of  Design Space” into Converter “η-ρ-σ-Performance Space”
● Design Space — Set of Selected Design- & Operating Parameters, Materials, Components, Topology, etc.

Performance Space

Design Space

Abstraction of Power Converter Design

18
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Mathematical Modeling
of the Converter Design

● Best Utilization of All Degrees of Freedom  Multi-Objective Optimization  

19
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■ Based on Mathematical Model of the Technology Mapping 
■ Multi-Objective Optimization  Best Utilization of the “Design Space”  
■ Identifies Absolute Performance Limits  Pareto Front / Surface 

● Clarifies Sensitivity to Improvements of Technologies 
● Trade-Off Analysis

 

Multi-Objective Optimization

20
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■ Equal Performance      for Largely Different Sets      of Design Parameters 
■ E.g. Mutual Compensation  of  Volume or Loss Contributions (e.g. Cond. & Sw. Losses)

● Allows Consideration of Additional Performance Targets (e.g. Costs)

 Optimize
 Understand

21

Design Space Diversity
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Design Space Diversity — Example
■ Design of a Medium-Frequency Transformer
■ Power Level & Power Density = const. 
■ Wdg./Core Loss Ratio, Geometry, n etc. as Design Parameters

● Mutual Compensation Core & Winding Losses Changes 
● Limits on Part Load Efficiency / Costs / Fixed Geometry  Restricted Diversity 

Source:  T. Guillod / ETH 

▼

22
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State-of-the-Art
– User Defined Models 

and Simulation / 
Fragmented  

Assisted Design
– Support of the User with 

Abstracted Database of 
Former Designs

Augmented Design
– Suggestion of Design 

Details Based on
Previous Designs

Autonomous Design Design 4.0
– Independent Generation 

of Full Designs for Final 
Expert Judgement  

■ End-to-End Horizon — Cradle-to-Grave/Cradle — Modeling & Simulation 
■ Design for Cost / Volume / Efficiency / Manufacturing / Testing / Reliability / Recycling  

● AI-Based Summaries  No Other Way to Survive in a World of Exp. Increasing # of Publications (!)

Design Automation Roadmap  



23
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Modularization
Functional Integration
Synergetic Association

Hybridization
Decentralization

X-Concepts 
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ModularizationX-Concept
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Scaling of Multi-Cell/Level Concepts
■ Reduced Ripple @ Same (!) Switching Losses
■ Lower Overall On-Resistance @ Given Blocking Voltage 
■ Application of LV Technology to HV

 





 !

● Scalability / Manufacturability / Standardization / Redundancy  

!
fsw

24

Source: R. Pilawa

Integrated Dual-Sided 
Half-Bridge Flying 

Capacitor Converter 
Switching Cell

fsw

N.fsw
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SiC/GaN Figure-of-Merit 

● Advantage of  Multi-Level over 2-Level Converter Topologies 

■ Figure-of-Merit (FOM) Quantifies Conduction & Switching Properties 
■ FOM Determines Max. Achievable Efficiency @ Given Sw. Frequ. 

ds,on oss

1
FOM

R Q


25
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Psemi,min,ML ≈ 1/N1.2 Psemi,min,2L
Achip,ML ≈ N1.2Achip,2L

X-FOM of ML-Bridge-Legs
■ Quantifies Bridge-Leg Performance of N-Level FC Converters  
■ Determines Max. Achievable Efficiency & Loss Opt. Chip Area @ Given Sw. Frequ. 

N= # of Levels -1 

● Compared to 2-Level Benchmark         
@ Same Filter Ind. Volt-Seconds

    
 

26



/ 63

■ Realization of a 99%++ Efficient 10kW 3-Φ 400Vrms,ll Inverter System
■ 7-Level Hybrid Active NPC Topology  / LV Si-Technology 

99.35%
2.6kW/kg 
56 W/in3

● 200V Si  200V GaN Technology Results in 99.5% Efficiency

3-Φ Hybrid Multi-Level Inverter  
27
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■ Operation of N-Level Topology in 2-Level or 3-Level Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  

Q3L  Q2L  

● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/Low RDS(on)/Low $ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

28

Quasi-2L & Quasi-3L Inverters 
Source: M. Schweizer
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EMI Filter

3.5kW/dm3

Eff. ≈ 99%

3.3kW @ 230Vrms /50Hz
Equiv. fS= 48kHz

■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

● Reduced Average dv/dt Lower EMI
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/Low RDS(on)/Low $ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

Quasi-2L & Quasi-3L Inverters 

29

Source: M. Schweizer



/ 63

Source: M. Schweizer

Operation @ 3.2kW

— Conv. Output Voltage 
— Sw. Stage Output Voltage
— Flying Cap. (FC) Voltage
— Q-FC Voltage (Uncntrl.)

— Output Current   
— Conv. Side Current

■ Operation of 5L Bridge-Leg Topology in Quasi-3L Mode 
■ Intermediate Voltage Levels Only Used During Sw. Transients  
■ Applicability to All Types of Multi-Level Converters     

● Reduced Average dv/dt Lower EMI
● Clear Partitioning of Overall Blocking Voltage   &   Small Flying Capacitors  
● Low Voltage/Low RDS(on)/Low $ MOSFETs  High Efficiency / No Heatsinks / SMD Packages  

Quasi-2L & Quasi-3L Inverters 

30
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2-Level vs. Multi-Level Inverter 

● 3D-Packaging / Integration Highly Crucial for Utilizing Multi-Level Advantages (!)

fS = 140kHz

fS,eff  =  6 x 120kHz = 720kHz

■ Example of                  Little Box Challenge 
■ Target:  2kW 1-Φ Solar Inverter with Worldwide Highest Power Density 
■ Comparative Analysis of Approaches of the Finalists 

Source: R. Pilawa-Podgurski

31
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● 3D-Packaging / Integration Highly Crucial for Utilizing Multi-Level Advantages (!)

Little-Box 2.0
240 W/in3

97.4%

215 W/in3

97,6%

Source: R. Pilawa-Podgurski

32

2-Level vs. Multi-Level Inverter 
■ Example of                  Little Box Challenge 
■ Target:  2kW 1-Φ Solar Inverter with Worldwide Highest Power Density 
■ Comparative Analysis of Approaches of the Finalists 
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1.2kV SiC

33

■ 400kW Extreme Fast EV Charger  |  3-Φ 13.2kV AC  1kV DC
■ Input Series Output Parallel (ISOP) Solid-State Transformer  
■ Alternative Low-Frequency Transformer & AC/DC Converter

● 1.2kV SiC MOSFETs Utilized in Both Systems   
● 3 x 9 = 27  AC/DC—DC/DC Cells  /  3-Level PFC Input Stage  & Full-Bridge DC/DC Output Stage 

2-Level vs. Multi-Level Inverter 

1.7kV SiC
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● Forced Air Cooling    
● 3 x 9 = 27  AC/DC—DC/DC Cells 
● 98+ % Efficiency  | 3000kgs  Weight  |  3100 x 1300 x 2100 mm  Outer Dimensions

AC Input Cabinet |      Converter Cabinets     | Control Cabinet

■ 400kW Extreme Fast EV Charger  |  3-Φ 13.2kV AC  1kV DC
■ Input Series Output Parallel (ISOP) Solid-State Transformer  

2-Level vs. Multi-Level Inverter 

 η = 0.98 
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■ 400kVA EcoDryTM High-Efficiency Transformer & AC/DC Converter
■ Vacuum Cast Coils         No Fire Hazard 
■ Amorphous Metal Core  Low No-Load Losses  
■ High Overvoltage / Overload Capability 

● 400kVA   1400 x 750 x 1500 mm  Outer Dimensions
● Utilizing SST SiC MOSFETs in AC/DC Stage  99++ % Efficiency 
● Higher Efficiency / Power Density / Robustness of  LFT–Based Concept (!)

2-Level vs. Multi-Level Inverter 

ηAC/DC ≈ 0.99

ηXFRM ≈ 0.9925

≈ 0.9825
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Functional
IntegrationX-Concept
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Buck-Boost 3-Φ Variable Speed Drive Inverter

● Switch-Mode Operation of Buck OR Boost Stage  Single-Stage Energy Conversion (!)
● 3-Φ Continuous Sinusoidal Output / Low EMI      No Shielded Cables / No Motor Insul. Stress

■ Generation of  AC-Voltages  Using Unipolar  Bridge-Legs
■ Utilize Filter Inductor  for Boost Operation  Functional Integration

36
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Boost-Operation  uan > Ui 

■ Phase-Module 

■ Motor Phase Voltages  

● Current-Source-Type Operation 
● Clamping of Buck-Bridge High-Side Switch   Quasi Single-Stage Energy Conversion 

37
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Buck-Operation uan < Ui

■ Motor Phase Voltages  

■ Phase-Module 

● Voltage-Source-Type Operation 
● Clamping of Boost-Bridge High-Side Switch   Quasi Single-Stage Energy Conversion 

38
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■ Dimensions   160 x 110 x 42 mm3

Control 
Board

Main 
Inductors

3Φ Output

● DC Voltage Range  400…750VDC
● Max. Input Current ± 15A
● Output Voltage        0…230Vrms (Phase)
● Output Frequency    0…500Hz
● Sw. Frequency     100kHz

DC Input

SiC 3-Φ Buck-Boost Inverter Demonstrator  

200V/div
1V/div

uab

∆uab

≈ 245 W/in3

39

Lighthouse
Project
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■ Based on Dual Active Bridge (DAB) Concept
■ Ingegration of 3-Φ PFC Rectifier & DC/DC Converter Stage
■ Opt. Modulation (t1…t4) for Min. Transformer RMS Curr. &  ZVS or ZCS
■ Allows Buck-Boost Operation

● Equivalent Circuit  ● Transformer Voltages / Currents 

Isolated Matrix-Type 3-Φ PFC Rectifier 

40
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● 900V / 10mΩ SiC Power MOSFETs 
● Opt. Modulation Based on 3D Look-Up Table

PO= 8 kW
UN= 400VAC UO= 400VDC
fS  = 36kHz

■ Efficiency η = 99% @ 60% Rated Load (ZVS)
■ Mains Current THDI ≈ 4% @ Rated Load 
■ Power Density ρ ≈ 4kW/dm3

10A/div
200V/div

99%

41

Isolated Matrix-Type 3-Φ PFC Rectifier 
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3-Port Resonant GaN DC/DC Converter 
■ Single Transformer & Decoupled Power Flow Control 
■ Charge Mode PFC  HV  (250…500V)  SRC DCX / Const. fsw , Min. Series Inductance / ZVS 
■ Drive Mode    HV   LV   (10.5…15V)  2 Interleaved Buck-Converters / Var. fsw  / ZVS
■ P = 3.6kW

● Peak Efficiency  of 96.5% in Charge Mode / 95.5% in Drive Mode
● PCB-Based Windings / No Litz Wire Windings  Fully Automated Manufacturing 

≈ 16 kW/dm3

42
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Low-Loss PCB-Winding Inductor
■ Conv. PCB Windings & Airgaps  Skin / Proximity / Fringing Field  ┴ to PCB  Current Displacement
■ Arrangement of Airgaps for Mutual Field Compensation
■ Thermal Interfaces for Efficient Cooling 

● Optimal Positions & Wdg Distance of Airgaps for Multi-Airgap / Multi-Layer Inductors
● Factor of 3 Red. of Skin & Prox. Losses

- 45%
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Synergetic
Association

X-Concept
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3-Φ EV-Charger Topology

Source: SIEMENS

■ Isolated Controlled Output Voltage 
■ Buck-Boost Functionality & Sinusoidal Input Current  
■ Applicability of 600V GaN Semiconductor Technology
■ High Power Density / Low Costs

 Conventional / Independent  OR “Synergetic Control” of Input & Output Stage 

44
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Synergetic Association

● Operating Point Dependent Selection of  1/3-PWM OR 3/3-PWM  for  Min. Overall Losses  

■ 1/3-Modulation  Significant Red. of Losses of the Power Switches Comp. to 3/3-PWM

■ Conduction Losses of the Switches  ≈ -80%
■ Switching Losses ≈ -70%

45
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HybridizationX-Concept
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Hybrid Switched-Capacitor Converters (SCC)

● 8-to-1 Dickson Soft-Charging SCC 
● 12 GaN Switches (40V & 100V) / 7 Flying Caps. (0.22uF & 2.2uF, 50|100|250V), 3.3uH

■ High Step-Down Ratio SCC / Voltage Adaption &  High-Frequency Magnetic-Based Post-Regulation  
■ Current-Impressing Converter/Load  “Soft-Charging” / No Charging Curr. Spikes / High Efficiency
■ High Energy Density of Caps. vs. Inductors  High Power Density / Suitable for Integration

Source: Y. Lei &
R. Pilawa-Podgurski, 2015

Uin = 200V
Uout = 25V
Iout = 3A
fSw = 250kHz
ηmax= 95.5%

≈ 16 kW/dm3

46
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● Non-Sinusoidal Mains Current

 PO= const. Required
 Sinusoidal Mains Current 
 NO (!) DC Voltage Control

■ Hybrid Combination of Mains- and Forced-Commutated Converter
■ 3rd Harmonic Current Injection into Phase with Lowest Voltage 
■ Phase Selector AC Switches Operated @ Mains Frequency  — 3-Φ Unfolder

Hybrid Integrated Active Filter (IAF) PFC Rectifier  



47
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IAF PFC Rectifier & Buck Converter Demonstrator
■ Efficiency η > 99.1% @ 60% Rated Load
■ Mains Current THDI ≈ 2% @ Rated Load
■ Power Density ρ ≈ 4kW/dm3

● SiC Power MOSFETs & Diodes
● 2 Interleaved Buck Output Stages
● Controlled Output Voltage

PO= 8 kW
UN= 400VAC UO= 400VDC
fS = 27kHz

►

48
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Hybrid 1-Φ AC/DC—DC/DC Solid-State Transformer 
■ Bidirectional 3.8 kVrms 1-Φ AC  400V DC @ 25 kW Power Conversion
■ Based on 10 kV SiC MOSFETs
■ Full Soft-Switching

● 35…75 kHz  iTCM Input Stage ● 48 kHz «DC-Transformer»  Output Stage

3.3kW/dm3 3.8 kW/dm3

44
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Overall Performance  AC/DC — DC/DC 

● Significantly Simpler System Structure Compared to Multi-Module (ISOP) SST Approach

■ Full Soft-Switching
■ 98.1%  Overall Efficiency @ 25 kW
■ 1.8 kW/dm3 (30 W/in3)

55

50

AC/DC Stage
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Partial/Differential Power Processing  

■ Reduced Converter Rating

■ Low Influence of Converter
Efficiency on Overall Efficiency

 





 


51

 
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■ Aux. Converter Stage for ± 10% Vin Compensation  | Vin = 340V … 420V
■ Const. Voltage Transfer Ratio / High Efficiency LLC «DC/DC Transformer» @ Const. Frequency | fsw = 100kHz 
■ Const. Output  Voltage | Vout = 48V 

● Rectangular Aux. Voltage Added or Subtracted (faux = 600kHz) from Vin
● Marginal Impact of Control on Overall Power Density & Efficiency

Partial-Power Pre-Regulated LLC DC-Transformer

≈ 140 W/in3
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■ Future Extension of EMI Limits  — 9kHz …150kHz  |  IEC TS 62578  Tech Spec. for Active Infeed Conv. Applications 
■ Earth Leakage Current “Compensation”  
■ Conducted CM EMI-Filter   

● Prevents Unintentional Residual Current Device (RCD) Tripping  w/o Isolation Transformer
● Attenuation of Cond. EMI Emissions in Wide Frequency Range 30/40/15dB @ 4/10/150kHz

Hybrid EMI-Filter / Leakage Current Reduction
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DecentralizationX-Concept
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■ Metcalfe's Law

Networking Scaling 



– Moving from Hub-Based Concept
to Community Concept Increases
Potential Network Value 
Over-Proportional  ~n(n-1)  or
~n log(n) 

ValueSource:
Pixabay

54
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■ Digital Twin     Physics-Based “Digital Mirror Image”
■ Digital Thread  “Weaving“ Real/Physical & Virtual World Together

● Requires Proper Interfaces for Models & Automated Design 
● Model of System´s  Past/Current/Future State  Design Corrections / Predictive Maintenance etc.

IIoT in Power Electronics   

Source: www.railwayage.com

Maintenance
History

Fleet Aggregate 
Data

Operational
History

Real Time
Operational Data

CAD Model

FEA Model

FMEA

55
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■ Condition Monitoring of DC Link Capacitors 
■ On-Line Measurement of the ESR in “Frequency Window” (Temp. Compensated)
■ Data Transfer by Optical Fibre or Near-Field RF-Link Source: Prof. Ertl

TU Vienna, 2011

PCB

MONITORING BUS

ELECTROLYTIC CAPACITOR

SHR

DC LINK
BUS BARS

MICRO-
CONTROLLER

SHUNT-
RESISTOR

56

IIoT Starts with Sensors (!)

● Possible Integration into Capacitor Housing or PCB
● Additionally  features Series Connect. Voltage Balancing 
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■ Utilize the “Motor as Transducer” for Determining Aging / Service Wear of Motor / Mechanical Load
■ Non-Intrusive Detection of Mechanical or Electrical - Bearings or Stator & Rotor - Abnormalities
■ Motor Current Signature Analysis (MCSA) in Time  &  Frequency Domain 

Motor Condition Monitoring / Fault Detection 

● ORNL (1989) — MCSA Condition Monitoring of Motor-Valves in Nuclear Power Plant Safety Systems
● ANNs Discussed for Diagnostics since 25+ Years — Improvements w/ Computing Power of Modern Inverters

Source: ORNL, 
Kryter et al., 1989 

Source: R. Fiser et al, 1997 

Source: S. Cruz et al, 1998 
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Smart Inverter Concept

■ Utilize High Computing Power and Network Effects in the Cloud
Source:   R. Sommer

● On-Line Protection / Monitoring / Optimization  on  Component | Converter | Drive  | Application  Level         

58



/ 63



/ 63

Future Development / Trends 

● More Application Specific Solutions
● More Specific Requirements – High Peak/Avg. Ratio,  Wide Volt. Range etc.
● Cost Optimization @ Given Performance Level for Standard Solutions
● Design / Optimize / Verify (All in Simulation) — Faster / Cheaper / Better

■ MEGA-Trends — Renewable Energy / Energy Saving / E-Mobility / “SMART XXX”
■ Power Electronics will Massively Spread in Highly Diverse Applications 

•  Standardized
•  Robust & Reliable
•  Plug & Play 
•  Cost Optimized
•  Environmentally Friendly 

Market Pull

•  Energy Saving
•  E-Mobility
•  Renewable Energy 
•  etc.

Technology Push

•  WBG Semiconductors
•  Digital Control
•  3-D Packaging 
•  Adv. Design

2020 2030
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● “There's Plenty of Room at the Bottom”, Lecture by R. Feynman @ Caltech, 1959 
● Key Importance of Technology Partnerships of Academia & Industry

■ WBG Driven Extension to Medium Voltage  |  Extension to Micro-Power Electronics
■ Extreme Cost Pressure for Standardized Solutions (!)

Future Application Areas  

“There is Plenty of..
Room at the Bottom”

“There is Plenty of. 
Room at the Top”  Medium Voltage/Frequency 

Solid-State Transformers  

Power-Supplies on Chip 
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“Moore´s Law” of Power Electronics

● Potential Power Density Improvement  — Factor  2 … 5 Until 2030
● Definition of “η*,ρ*,σ*,fP*– Technology Node” Must Consider Conv. Type / Operating Range etc. (!)

■ “Moore´s Law” Defines Consecutive Technology Nodes Based on Min. Costs per Integr. Circuit (!)
■ Complexity @ Min. Comp. Costs Increases approx. by Factor of 2 / Year

Gordon Moore: The 
Future of Integrated 
Electronics, 1965  
(Consideration of Three 
Consecutive Technology
Nodes)

Lower
Yield

Economy of
Scale

>2015: Smaller 
Transistors but Not 
any more Cheaper

►
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Source: 
www.roadtrafficsigns.com
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■ Design Considering Converters as Standardized “Integrated Circuits” (PEBBs)
■ Extend Analysis to Converter Clusters /  Power Supply Chains / etc.

─ “Converter”       “Systems” (Microgrid) or “Hybrid Systems” (Automation / Aircraft)
─ “Time”              “Integral over Time”
─ “Power”            “Energy”



─ Power Conversion        Energy Management / Distribution 
─ Converter Analysis     System Analysis (incl. Interactions  Conv. / Conv. or Load or Mains) 
─ Converter Stability     System Stability  (Autonom. Cntrl of Distributed Converters)
─ Cap. Filtering          Energy Storage  & Demand Side Management
─ Costs  / Efficiency        Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency
─ etc.

Power Electronics  “Energy” Electronics  
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Energy Electronics Systems
Performance Figures/Trends

─ Power Density   [kW/m2]
─ Energy Density              [kWh/m3]                            
─ Environmental Impact  [kWs/kW]
─ TCO                       [$/kW]
─ Mission Efficiency [%]
─ Failure Rate    [h-1]

■ Complete Set of New
Performance  Indices

►

►

Supply Chain 
&

►
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Thank you!


