

The Path Towards 10kW 3-Phase On-Board Chargers

infineon

ETH zürich

Featuring 600V CoolGaNTM GIT HEMT Technology

Dr. Jon Azurza, Dr. Matthias Kasper, Dr. Gerald Deboy – Infineon Technologies Austria AG Yunni Li, Prof. Dr. Johann W. Kolar – Swiss Federal Institute of Technology, ETH Zurich

1	System Introduction	3
2	AC/DC Stage	7
3	DC/DC Stage	16
4	Results	18
5	Conclusions	21

Acknowledgements: Dr. Jannik Schäfer Dr. Michael Haider Dr. Johann Miniböck

1	System Introduction	3
2	AC/DC Stage	7
3	DC/DC Stage	16
4	Results	18
5	Conclusions	21

GaN has the potential to redefine automotive OBC and DCDC applications when moving towards high switching frequency

- Si remains the mainstream technology
- Targeting 25 V 6.5 kV
- Suitable from low to high power

- SiC complements Si in many applications and enables new solutions
- Targeting 650 V 3.3 kV
- High power high switching frequency
- GaN enables new horizons in power supply applications and audio fidelity
- Targeting 80 V 600 V
- Medium power highest switching

GaN has the potential to revolutionize On Board Chargers, as enabler of ultra high power density designs beyond 6 kW/L

2022-03-23

System Introduction of an EV Charging Unit Paving the Path towards Ultra-Compact OBC

- > Wide EV Battery Voltage Range
 - > $400V_{\text{rms,in}} \rightarrow 250...1000 V_{\text{dc,out}}$
- AC/DC: 3-Φ Vienna Rectifier
 - > 550 kHz: CoolGaN[™] GIT + CoolSiC[™] Schottky
 - > Novel Synergetic Control: 1/3 PWM
- > DC/DC: 4x Dual Active Bridges (DABs)
 - > 140...400 kHz: CoolGaN[™] GIT HEMT

> How do we achieve such power density?

1	System Introduction	3
2	AC/DC Stage	7
3	DC/DC Stage	16
4	Results	18
5	Conclusions	21

AC/DC Stage: Vienna Rectifier

- > Conventional Modulation
 - 3/3 PWM: 3 out of 3 phases pulse-width modulated
 - Constant DC Voltage: 800V
 - Decoupled AC/DC and DC/DC: Large DC Link Caps

AC/DC Stage: Vienna Rectifier

- Novel Modulation
 - 1/3 PWM: 1 out of 3 phases pulse-width modulated
 a.k.a. "Synergetic Control"
 - Variable DC Voltage
 - Coupled AC/DC and DC/DC: Small DC Link Caps
 - Significant Switching Loss Saving
 - Performance improvement: efficiency/power density
 - Cost reduction: higher R_{dson} devices if always in 1/3 PWM operation

AC/DC Stage Operation Principle of the 1/3 PWM

- > Diode Rectifier
 - Constant Power Load
 - Simple Realization
 - Minimum DC-Link Voltage \rightarrow Six Pulse Shape
 - Block-Shaped Input Currents → Low Freq. Harmonics / No PFC

AC/DC Stage Operation Principle of the 1/3 PWM

- > Integrated Active Filter (IAF)
 - Only 1 Bridge Leg PWM
 - Insert a Current Prop. To Smallest Voltage in the "Middle Phase"
 - "Phase-Selector" 100/120Hz Switches
 - Active Sinusoidal Input Currents
 - No Boost Capability 😃

AC/DC Stage Operation Principle of the 1/3 PWM

> Integrated Active Filter (IAF) vs. Vienna Rectifier

- 3-Φ PFC Rectification is achieved with both
- 1x Inductor in the IAF \rightarrow 3x Inductors in the Vienna Rectifier
- Vienna Rectifier has less semiconductors
- Vienna Rectifier can boost

1/3 PWM Semiconductor Loss Savings

> Switching Losses

- 3/3 PWM: $P_{sw,3/3} = (E_{sw,0} + E_{sw,1} \cdot I_{avg}) f_{sw}$

- 1/3 PWM:
$$P_{sw,1/3} = \left(\underbrace{\frac{E_{sw,0}}{3}}_{-66\%} + \underbrace{\left(1 - \frac{\sqrt{3}}{2}\right)E_{sw,1} \cdot I_{avg}}_{-86\%}\right)f_{sw}$$

Conduction Losses

		3/3 -PWM	1/3 -PWM	Diff.
Switches	RMS	10.2 A	3.7 A	- 63.4 %
Diadaa	RMS	19.3 A	20.4 A	+ 5.5 %
Diodes	AVG	11.1 A	12.44 A	+ 12.3 %

Synergetic (1/3 PWM) Control Structure

Synergetic Cascaded Control Structure

Valid for 1/3 PWM and (!) 3/3 PWM

•

System Simulation Synergetic (1/3 PWM) Control Validation

Further Reading: J. Azurza, M. Haider, D. Bortis and J. W. Kolar, "New Synergetic Control of a 20kW Isolated VIENNA Rectifier Front-End EV Battery Charger", IEEE COMPEL, 2019

1	System Introduction	3
2	AC/DC Stage	7
3	DC/DC Stage	16
4	Results	18
5	Conclusions	21

Dual Active Bridge (DAB)

> Topology & Specifications

Parameters	Value
Rated Power	2.5 kW
Input Voltage Range	280 - 400 V _{dc}
Output Voltage Range	125 - 500 V _{dc}
Turns Ratio	16:10
Leakage Inductance	12.3 µH
Switching Frequency	140 - 400 kHz

1	System Introduction	3
2	AC/DC Stage	7
3	DC/DC Stage	16
4	Results	18
5	Conclusions	21

Vienna Rectifier Measurements (3/3 PWM)

DAB Measurements @ max (12.5A, 2.5kW)

1	System Introduction	3
2	AC/DC Stage	7
3	DC/DC Stage	16
4	Results	18
5	Conclusions	21

Conclusion & Next Steps

Next Level of Power-Density Achieved

> Enabled by:

- Synergetic Control of AC/DC & DC/DC Stages
- DAB Stage for Wide Output Voltage Regulation
- Infineon CoolGaN[™] GIT
- f_{sw} up to 550kHz → Flat Mag. Profile

Next Steps

- Full Power Testing
- Hardware Verification of:
 - 3/3 PWM
 - 1/3 PWM w/ Synergetic Control

Let's Team Up to Redefine On-Board Chargers!

Power Density

* Casing/cooling not included

☆ 94.8%*

 * Measured at 5kW, 400V_{\rm out} more measurements pending

Part of your life. Part of tomorrow.