

Power Electronic Systems Laboratory

ANN Powered Models for Magnetic Components

ECPE Online Workshop Steps towards Design Automation and Artificial Intelligence in Power Electronics December 3, 2021

Thomas Guillod¹ and J. W. Kolar¹

¹ Power Electronic Systems Laboratory, ETH Zurich, Switzerland

Acknowledgements

- Dr. P. Papamanolis
- Dr. D. Rothmund
- Dr. F. Krismer
- Haoran Li
- Evan Dogariu
- Dr. D. Serrano
- Prof. Minjie Chen
- Andrew Nadler
- Prof. C. R. Sullivan

PRINCETON UNIVERSITY

- Dr. Min Luo
- Gianfranco Mauro
- Dr. K. Leong
- Dr. M. Kasper
- Dr. G. Deboy

State-of-the-Art

Numerical models Semi-numerical

Multi-Objective Optimization

Advantages

- Efficiency, power density, costs, reliability, etc.
- Virtual prototyping \rightarrow time to market

- Requirements
 - Optim. algorithms & objectives
 - Models & material parameters

[Adapted from R. Burkart, PhD Thesis, ETHZ, 2016]

4/34 -

Magnetic Model Properties

- Modeling goals
 - Accurate & robust
 - Versatile & comprehensive
 - Extensible & adaptable
 - Simple implementation & fast evaluation
 - Ability to "debug"
 - Give "physical" insights

Model properties

- Multi-physics
- Space dependent / dynamic
- Multivariable (input & output)
- Constrained (explicit & implicit)
- Mixed-integer (discrete variables)
- Non-linear / non-convex
- Discontinuous / no explicit gradient
- No explicit solution
- Lack of first principle model

Magnetic modeling is intrinsically difficult

0 0

Losses (W)

50

100

Volume (cm3)

Full Numerical Model

- **Based on fundamental equations**
 - Maxwell
 - Heat transfer
 - Navier-Stokes

- Methods
- FEM/FVM
- FDM/FDTD
- PEEC/MoM
- Properties
 - Highest accuracy
 - High modelling effort
 - High computational effort

- Useful for final validation, difficult for optimization
- Lack of first principle models (e.g., core losses)

Semi-Numerical Model

- Modelling approach
 - Many analytical equations

Specifications V₁, V₀, P₀, Δv₀, CISPR 11/22 A,B

Converter Topology Modulation Scheme

Electric Power Circuit Model

low /low

Semiconductor Type

Loss Model

R.*

Off-line

Optimized Heat Sink

Semic

Losse

Heat

Sink

Volume

Summation of Component Volumes and Losses Total Converter Volume / Losses

• Thermal-loss coupling

 \hat{I}_L / I_{Lrm}

ransformer / Inductor

Windings Geom.
Wire Type

Reluctance Model

Loss Model • Windings • Core

Thermal Model

 T_C / T_W

 Φ / Φ_{res}

Transformer

Inductor

Volume

Core Geom
Core Type

Capacitor Type

Loss Model

Capacitor Volume Capacito

Min Losse

 $B \leq B_2$

 $V \le V_i$

Losses

• Numerical solution

Component Values, fp

DM Noise Model

....M

LDM/LCM

Filter Inductor

Geometry
Material

Loss Model

Ŧ

Thermal Model

 $i_1(t) / v_2(t)$

CM Noise Model

Filter

Capacitor Type

Loss Model

EMI Filter EMI Filter

Cap. Vol Cap. Losses

 A_{CM}^*

Off-line Optimiz

- High accuracy

- Easy to integrate in a full converter model
- Typical choice for optimization

[Adapted from R. Burkart, PhD Thesis, ETHZ, 2016]

Fundamental Limits

Measurements Tolerances

Limitations: Measurement Uncertainties

- Challenges
 - HF harmonics
 - High efficiencies
 - Reactive power

Potential solutions

- Calibration against "ideal" reference
- Reactive power compensation
- Calorimetric measurement (transient / steady-state)

Calorimetric Meas.

- **Typically: 5-25% for magnetic components**
- Error analysis (statistical and systematic errors)

Limitations: Material & Geometrical Tolerances

Tolerances

- Material batch (e.g., core, Litz wire)
- Construction tolerances
- How representative is the prototype?

Example

- 20kW / 100kHz MF transformer
- Equivalent circuit tolerances
- Monte-Carlo method

Batch to batch variations are not negligible

1.0

 $|H/H_{\text{max}}|$ [p.u.]

0.0

Limitations: Material & Geometrical Tolerances

Tolerances

- Material batch (e.g., core, Litz wire)
- Construction tolerances
- How representative is the measurement?

Example

- 20kW / 100kHz MF transformer
- Equivalent circuit uncertainties
- Monte-Carlo method

■ In this case neither the models nor the measurements are the bottleneck

[Adapted from T. Guillod, Springer Electr Eng, 2017]

Neural Network Models

Properties Workflows

Data-Driven Model

- Modelling approach
 - Measurements
 - Simulation data
 - Datasheets

- Properties
 - Versatile methods
 - Limited physical meaning
 - Limited validity range

- Methods
 - Interpolation (e.g., loss map)
 - Model fitting (e.g. Steinmetz)
 - Machine learning

New class of model for magnetic?

Artificial Neural Networks

- Main categories
 - Supervised learning → labeled/scored data
 - Unsupervised learning \rightarrow raw data
 - Reinforcement learning → feedback loop learning
 - Shallow ANN → basic modelling
 - Deep ANN \rightarrow complex modeling
- Many variations
 - MLP: regression, classification → modelling
 - GAN: generation, regression, classification → complex modelling
 - CNN: image processing → field pattern, geometry, etc.
 - RNN: time series → waveform, ODE, etc.

Properties

- Extremely flexible & versatile
- Low computational cost at evaluation
- Large / complex datasets
- Noisy / incomplete datasets

Deep Learning for MF Transformers

- Goal
 - Comprehensive MF transformer model
 - Complete black box model

Deep learning

- Many hidden layers (dense, sparse, dropout)
- Classification, clustering, and regression

Deep Learning for MF Transformers

Dataset

Invalid

0.1%

Invalid

Output Valid

- Semi-numerical simulation data
- Coupled loss-thermal model
- Different geometries & materials
- Power, voltage, frequency, etc.
 - **Classification error (test set)** Clustering/regression error (test set) 0.6 error 384608 **484** 0.1% 99.9% 99% percentile 0.5 93.8% 0.1% 95% percentile **Probability** 0.3 0. 419 24489 98.3% 0.1% 6.0% 1.7% 0.2 99.9% 98.1% 99.8% 0.2% 0.1

0

0

1

2

3

4 **Relative Error (%)**

5

6

7

8

Deep learning (TensorFlow)

- 410'000 designs for classification
- 50'000 valid designs for clustering/regression
- 20 inputs (geometry, material, applied waveform, etc.)
- 11 outputs (equivalent circuit, losses, temperature, etc.)

ANNs can handle the complexity of magnetic components

1.9%

Valid

Target

Deep Learning for MF Transformers

- 4.5 kW / 200V / 100V
 - Brute force grid search
 - ANN vs. semi-numerical model
- ANN model
 - Accuracy is not a problem
 - Extremely fast

Large training dataset is requiredBetter ANN modeling workflow?

ANN Workflows

- We understand (most of) the physics of magnetic components!
- Are 100% data-driven approaches really optimal?
- Hybrid workflows are promising

Inductor Design Tool ANN-Powered

[Adapted from T. Guillod, IEEE OJPEL, 2020]

ANN-Powered Inductor Design Tool

Goal

- Inductor design tool
- Accuracy of 3D FEM models
- Computational cost of analytical models

First trial

- GAN/CNN networks
- Generate field patterns
- Limited accuracy & outlier data
- Massive complexity

Second trial

- MLP networks
- Generate field pattern figures of merit
- Not cutting-edge machine learning
- Reasonable complexity
- Hybrid workflow (ANN+classical models)

► 3D FEM Database

Different geometries

- Variable sizes
- Variable shapes
- Variable air gaps

Different concepts

- Winding types (e.g., stranding)
- Core materials (e.g., permeability, losses, saturation)
- Thermal management (e.g., losses, ambient temperature, air-flow)

Figure of merits from 3D FEM?

► 3D FEM Figures of Merit

Magnetic FEM model

- $\int B \cdot H \, dV \rightarrow \text{energy} \rightarrow \text{inductance}$
- $\int B^{\beta} dV \rightarrow \text{flux density} \rightarrow \text{core losses}$
- $\int J^2 dV \rightarrow$ current density \rightarrow winding losses
- $\int H^2 dV \rightarrow$ magnetic field \rightarrow winding losses

Thermal FEM model

- ΔT (winding,avg) \rightarrow average winding temp.
- $\Delta T(\text{core,avg}) \rightarrow \text{average core temp.}$
- $\Delta T(\text{winding,max}) \rightarrow \text{hotspot winding temp.}$
- $\Delta T(\text{core,max}) \rightarrow \text{hotspot core temp.}$
- ΔT (insulation,max) \rightarrow hotspot insulation temp.

fringing field, leakage, saturation flux sharing, saturation, materials winding geometry, wire types, skin effect fringing, wire types, proximity effect

winding properties (loss coupling) core properties (loss coupling) thermal feasibility thermal feasibility thermal feasibility

Ы									
0-ba	sed								
5. D	OMAIN_IE	2							
	0							•	
	10								10
0	1	0.0	0.0	0.0	0.0	0.0	0.0	2	-
	2	1628.40	2322.81	8.48026	8.22543	-6.13143	161.948	2	
	3	3161.89	8801.75	3.40658	7.76640	-1.25340	310.733	2	
	4	4532.36	19214.9	7.53509	5.97121	-1.76494	446.807	2	
	5	5737.65	33080.7	1.30389	6.50855	-2.26160	564.981	2	
	6	6790.78	49974.8	1.97617	4.89545	-2.65913	668.562	2	
6	7	7680.71	69465.4	2.75166	5.15978	-3.01822	755.504	2	_
7	8	8415.10	01118.9	9.61.409	9 75002	-9.20801	827.060	9	

3D field pattern can be described with lumped quantities

FEM/ANN Hybrid Modeling Workflow

- ANN predict the field pattern FoMs
- Analytical pre-computation
 - ANN predict correction factors
 - Increased regression accuracy
 - Reduced dataset size
 - Give physical insights
- Custom variable scaling
- Implementation
 - FEM: COMSOL
 - ANN: TensorFlow
 - Code: MATLAB+Python
 - Compatible with HPC
- Replacing 3D FEM models by ANNs

Time consuming: evaluated once

FEM/ANN Hybrid Modeling Workflow

Hybrid model

- Semi-numerical model
- ANNs for getting field patterns
- Extensible & adaptable
- Give physical insights
- Vectorized & parallel
- 30 inputs and 40 outputs

Considered effects

- Fringing, flux sharing, leakage, saturation
- Heat conduction & convection
- Harmonic distortion
- Skin and proximity effects
- Core loss-map with DC bias
- Thermal-loss coupling

Trying to combine the best of both worlds

Fast: evaluated for each inductor spec.

ANN Training & Performance

- Dataset
 - Random distribution
 - 20'000 magnetic designs, 8 input variables, 4 output variables
 - 20'000 thermal designs, 9 input variables , 5 output variables

ANNs vs 3D FEM: less than 3% error

► ANN Tuning

Data set size: 5'000 samples are sufficient

- Clearly better than interpolation
- Regular grid would require: 6⁹ = 10'000'000 samples
- ANN structure: shallow ANNs are sufficient

Simple ANN & small dataset

Workflow Performance

- **3D FEM is only used for training the ANN**
- Advantages for the end-user
 - PDE/FEM competencies are not required
 - No need of a powerful machine
 - No need of a FEM solver / software license
 - Ideal for a SaaS/online tool

	Intel i7-8650U	2 x AMD EPYC 7742 + GPU
3D FEM	160 hours	12 hours
ANN training	10 min	1 min
Inductor design eval.	20us / 50′000 per sec.	0.9us / 1'100'000 per sec.

- Less than 3% deviation with 3D FEM
- Can compute a design within microseconds

AI-mag Inductor Design Tool

■ 2kW Buck converter (400V to 200V)

Core	E55/28/21, TDK N87
Air gap	2 x 400um
Wire	900 x 100um
Winding	16 turns / 2 layers

- 0.6% error between ANNs and 3D FEM
- **1.4%** error between ANN and meas. for the inductance
- 11.5% error between ANN and meas. for the losses

AI-mag Inductor Design Tool

承 Al-mag / InductorPareto

Open-source / BSD license MATLAB, Python, TensorFlow, COMSOL https://doi.org/10.1109/0JPEL.2020.3012777 https://ai-mag.github.io

Conclusion & Outlook

Model & Optimization Future Research Areas

Conclusion & Outlook

- Magnetic modeling
 - Large number of variables
 - Complex design/performance mapping
 - Lack of accurate first principle models
 - High-computational costs
- ANNs are naturally adapted to such problems
- Potential usage of ANNs
 - System level
 - Component level
 - Sub-component level
 - Integrated model/optimizer
 - Combining heterogenous measurements, simulations, datasheets, etc.
- ANNs have proven to be competitive/better than classical models

Conclusion & Outlook

- Dataset
 - Large datasets are required
 - Dataset accuracy is critical (systematic errors)
 - Sample distribution is critical (biased dataset)
 - Error analysis, GAN, transfer learning, open-data

Blackbox

- Difficult to debug
- Difficult to choose the ANN type/structure
- Offer limited physical insights
- Unphysical solutions can be generated
- Physic-informed ANN, hybrid ANN/classical models

Model quality

- Outliers with "averaged" error metrics
- Extrapolation is unreliable & dangerous
- Careful testing of the ANNs
- Practical issues
 - ANN frameworks are quickly evolving and complex
 - Sharing & reproducing results is challenging
 - Open-source design tools

Open-Source Contributions

- Magnetic component design
 - AI-mag ANN powered inductor design
 - Semi-numerical optimization for inductors & transformers
- Magnetic field computations
 - Mirroring method magnetic field / inductance matrix
 - Litz wire FEM post-processing / fully coupled homogenization
- Multi-objective optimization
 - Multi-objective optimization brute-force / genetic / parallel
 - Plotting large datasets parallel coordinates / big-data scatter plots
- And much more
 - Scattered interpolation
 - FEM mesh handling / plotting
 - Inductance/resistance matrix extraction
 - Fourier series with PWM
 - Lab. device remote control

https://github.com/ethz-pes https://github.com/otvam

Thank You! Questions?