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Still Increasing Use of Fossil Fuels 
Increasing CO2 Emissions / Global Warming 

Net-Zero by 2XXX / $$$$

The Challenge
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■ Technological / Economic Advances Linked to Exponential Increase of Fossil Fuel Consumption
■ Continuous “Energy Addition” — Adoption of Larger Share of Higher Energy Density Fuels — Wood → Coal → Oil & Gas

Industrial Revolution 1 – 4 

■ 2024 % of Global CO2 Emissions / % Global Population — China  32%/18% | USA  13%/4% | India  8%/18% 
■ Poorest Countries Contributed Least to Historic CO2 Emissions/Climate Change BUT Are Most Vulnerable to Impacts

→

10 Tons/
Capita

160 ́ 000 TWh
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■ Direct Relation of Energy Use & GDP/Capita — There are No Low-Energy Intensity Rich Countries (!)
■ Lower Energy Intensity (Energy per Unit of GDP) Pot. Resulting from Offshoring Energy-Intense Manufacturing   

Growth of Population & Energy Demand

 

   

   

   

   

   

   

   

   

   

     

                    

                                                       
                                

        

    

           
      
        
                  

    
                  
                     
                

                   

■ Growth of World Population / Increasing Energy Use in Developing Non-OECD Countries
■ 1980 — 4.4 Billion | ≈ 10 TW.yr → 2022 — ≈ 8 Billion | 20.4 TW.yr → ≈ 2.6 kW Continuous/Capita

→

2050
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■ Different Warming Rates for Different Locations / Land is Warming Faster than Oceans (+0.8°C) 
■ Due to Climate System Feedback Loops Arctic Ocean Shows Highest Warming / +4°C  since 1960 (!)

■ Combustion of Fossil Fuels – Increasing Atmospheric CO2 Concentration / +50% Since Industrial Revolution 
■ Gradual Increase of Tropospheric Temperature of  ≈ +1°C  since 1960  

Global Warming

Map of temperature changes (1961–2019)

S     : 

Δ=0°C

https://factsonclimate.org/assets/generated/map-temperature-change_6000.png


7

40 GtCO2→

Decarbonization / Defossilization

■ Challenge of Stepping Back from Oil & Gas 

■ “Net-Zero” Emissions by 2050 & Gap to be Closed
■ 50 GtCO2eq Global Greenhouse Gas Emissions / Year  → 280 GtCO2 Budget Left for +1.5°C Limit

„Net-Negative“
Remove Overshoot 

of 300 GtCO2

U

→

ETO  DNV Energy Transition Outlook 2022  
PNZ Pathway Net Zero by 2050 

Source:  
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■ Total Cost of U.S. “Moonshot” ≈300 Billion USD (in 2020 $) 

■ ≈ 9 Trillion USD Annual Spend on Physical Assets for Energy & Land-Use Systems in NGFS NZ 2050 Scenario
■ Power | Industry | Mobility | Buildings | Agriculture | Forestry | Etc.

Energy Transition Costs 

Net 
Zero 
2050

I   : V. 
S   

NGFS — Network for 
Greening the Financial 
System, 114 Central 
Banks, 2017 

Trillion
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Renewable Energy Sources 
Long-Distance Transmission  
Short & Long-Term Storage

Utilizing Renewable Energy
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The Opportunity

→

■ Global Distribution of Solar & Wind Resources

Source: R. Perez et al., 
IEA SHC Program Solar 
Update (2009)

(2009)  16 TW-yr 27 TW-yr (2050) 

100% Conv. Efficiency
Excl. Oceans 

Note: Graphical 
Representation Assumes 
Spheres Not Circles 

Primary Consumption:
16 TW-yr → 27 TW-yr
Final Consumption:
11 TW-yr → 15 TW-yr

→
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■ Capacity Factor of Renewables Dependent on Geogr. Location & Day/Night & Summer/Winter & Transm. Capacity
■ PV & Wind Partly Complementary — Typ. Annual Avg. ≈30% for U.S. Wind | ≈20% for U.S. Solar (12% in Germany)

■ Ratio of Actual Energy Output Over
Given Period of Time to Theoretical
Maximum @ Full Nameplate Cap.

Challenge #1 – Low PV/Wind Capacity Factors
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■ Low Energy Density of RES — Large Land Use / Collection Grid / Long Distance Transmission for Powering Load Centers 
■ ≈1.7 10 5 TWh of World´s Annual Energy Consumption (2023) — PV @ ≈0.09 TWh/km2 

→1.9 10 6 km2 ≈ Algeria   

■ Energy Density — Determined by Power Density | Intermittency &/or Capacity Factor | Buffer Zones | Storage | etc.
■ Land Footprint of Renewable Energy Sources Massively Larger Compared to Fossil Fuel / Nuclear Power Plants

Challenge #2 – Low PV/Wind Areal Energy Density

A      G               TW   S            

S     :      ://   .             .  /
J. K. Nø      NTNU       

≈10 [Wavg /m2]

S     :         J.K. Nø         .       
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■ Growth of Transmission in Line w/ Growth of Electricity Generation Capacity | 10 TW → ≈10 Million km HV Lines
■ U-HVDC Transmission Lines Connecting Megacities to Remote Wind & Coal-Fired Power Plants / Solar Farms etc.    

Challenge #3 — Long Distance Transmission

■ 30´000 km U-HVDC Links Built Over Last Decade in China / Emerging Nationwide Super-Gird Interconn. Reg. Grids
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■ Considerable Overdesign of Optimal PV & Wind  & 12 Hours Storage Still Leaves Considerable Power Supply Gap (Germany) 
■ Islanded Megacity → Power Supply of 10 Million People x 2.6 kW x 1 Hour = 26 GWh → 86´000 Tons of 300 Wh/kg Batteries

■ Variability of Renewables & “Dunkelflaute” — Batt. Storage | HVDC-Links | Sector Coupling | Gas/Coal/Hydro Plants
■ World´s Largest Battery Storage / Pumped Hydro Storage — 3.3 GWh @ 0.875 GW / 40 GWh @ 3.6 GW  

Challenge #4 – Storage Requirements  1/3

Source: nature communications
https://doi.org/10.1038/s41467-021-26355-z

Dan Tong et al., 2021
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■ Comparison of PV & Fossil Fuel Power Gen. Must be Based on “LCOE” (Panels/Inverter/Cap. Factor/ Storage/Transmission etc.) 

■ U.S. Cost Benchmarks for Utility-Scale PV-Plus-Storage Systems (4 Hours) / DC-Coupled or AC-Coupled 

Challenge #4 – Storage Requirements  2/3

S     : 

T SLA
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■ Opt. Use of Cross-Energy Sector Flexibility — Coupling of El. Power / Heating / Nat. Gas or H2 or Methane
■ Direct or Indir. Storage — Grid Conn. Batteries / CHP & Heat Storage / H2 → Methane – Long Term Gas Store

■ Ensure Reliable Supply @ High Share of Intermittent RES — Power Balance on Different Time Scales
■ Accurate Forecast / Local Storage / HVDC Interconnectors to Neighboring Countries / Sector Coupling

S     : 

     ://   .               .   /   /   /      

Challenge #4 – Storage Requirements  3/3

→ →

00:00 MEZ 12:00 MEZ



17

The Global Grid

■ Example of the “Global Energy Interconnection Backbone Grid” (GEIDCO) Proposed by China in 2015

■ “Super/Mega/Overlay Grid”- Concepts Proposed since 1950s — GENESIS (1994), DESERTEC (2003), etc.
■ U-HVDC Trans-Continental or Multi-National Supply & Trade of Clean Electricity  

Source: GEIDCO 2018
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■ Hydrogen Hype — A Story of Energy Loss (?) / Direct Use of Electricity Clearly Superior if Possible (!)
■ Low-Efficiency Processes — 60% Electrolysis / 70% Liquefying Hydrogen / 60% Fuel Cells / etc.

■ Hydrogen Economy — H2 Produced & Used Directly or in Synthesis w/ Nitrogen or Carbon (Ammonia, Methanol, etc.)
■ Prod. @ High RES Intensity Locations — NH3 Transp. by Ships — Use for Long-Term Storage & Hard-to-Abate Sectors

Power-to-X-to-Power 

(!)

ηtotal ≈ 13%

15%

21%

26%

28%

15%

13%

28%

26%

Transport

Storage/Boil-
Off-Losses Not 
Considered  

Electric Power
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Electricity / Heat / H2  / E-Fuels / CO2 Infrastructure 
Aviation etc. / Green Steel / Cement / Chemicals 

Multi-Carrier Energy System 
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■ 2.5% of Global CO2 Emissions / ≈1.2 Billion Liters of Aviation Fuel/Day in 2024 / ≈35% SAF by 2050 
■ 30´000 New Commercial Aircraft & Freighters in 2021–2040 incl. Replacements — 4.8 Trillion USD

■ Growing Air Travel Demand Driven by Growing Middle-Class & Desire to Explore / Connect Globally 
■ E-Commerce Drives ≈5%/Annum Growth in the Freight Sector — 200 Million Tons of Global Air Cargo 

Hard-to-Abate Sector #1 ̶ Aviation

→

→
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■ Ultra-Large Container Vessels (ULCVs) — 20´000 Twenty 
Foot Containers / 15 ́ 000 Liters of Heavy Fuel Oil per Hour

■ 2.8% of Global CO2 Emissions / ≈85% of World Trade Carried by Sea / 12.3 Billion Tons / 100´000 Vessels 
■ IMO Strategy on NZ shipping around 2050  incl. Green H2 & Derivatives (E-Ethanol, E-Ammonia)

Hard-to-Abate Sector #2 ̶ Shipping

■ 80 MW @120 rpm / 2´300 Tons
Largest Diesel Engine Used in ULCVs

S     :      ://   .    -          .   /      ://   .              .   /



22

■ Steel Production Responsible for ≈8% of All Global Direct Emissions From Fossil Fuels
■ Global Steel Demand Expected to Increase from ≈1.9 Billion Tons/a in 2021 to Over ≈2.3 Billion Tons/a by 2050

■ Crude Iron Production in Blast Furnaces Reliant on Coal/Coke as Reducing Agent to Extract Iron from Ore/Fe2O3
■ Basic Oxygen Converter Turns Crude Iron into Easily Formable Steel / Electric Arc Furnaces Recycle Steel Scrap  

K. H   / L  W            
    :// x.   .   /  .    / .    .    .  .     

Hard-to-Abate Sector #3 ̶ Iron & Steel 

→

20502022
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■ China & India Account for Around 50% of Global Cement Production 
■ Intensity of Cement Use Declines After Initially Rising  w/ Increasing GDP/ Capita 

■ Cement — Key Ingredient in Concrete  /  Chemical Process & High Heat / 8% of Global CO2 Emissions  
■ Concrete is the Most-Consumed Human-Made Material on Earth / Buildings & Infrastructure etc. 

Hard-to-Abate Sector #4 ̶ Cement

5 Billion Tons / Year

→
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■ “Green Revolution” in Mid-20th Century — Higher Yield Due to Use of Fertilizers & Pesticides & Mechanization
■ Chemical Sector — Largest Industrial Energy Consumer / 3rd Largest CO2 Emissions after Steels & Cement

■ 11%/8% Global Oil/Gas Used for Production of Chemicals — Fertilizers, Pharmaceutics, Plastics etc. 
■ 50+% of Energy Input as “Feedstock” Finally Embedded in Products (Globally  ≈1 Mio PET Bottles Sold/Minute)

Hard-to-Abate Sector #5 ̶ Chemicals

19821964
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■ Integrated Net-Zero Multi-Carrier Energy System — E-Energy | Heat & Cold | etc. | Storage | CO2C&S
■ Missing Multi-Discipl. Research on Cross-Sector Converters / Technologies / Geogr. Diversity / Economics etc.  

■ CO2-Free Electricity / Electrification — Viable Pathway for Reducing Emissions !&! Costs (Long Term)
■ E-Fuels & P2X  for Long-Haul Transport / Aviation / etc.  &  Short Term / Seasonal Storage

27% of Difficult-to-
Eliminate Emissions

S.J. Davis et 
al. 
(2018)

Multi-Carrier Energy Society
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“Blind Spot” of Clean Transition
Requirements & Geopolitical Dependencies 

Mining Constraints 

Critical Raw Materials
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■ 50 New Lithium / 60 Nickel / 17 Cobalt Mines Required to Meet 2030 EV Battery Demand 
■ Development of a New Mine Takes 5…15 Years / x100 Million USD (!) – “Valley of Death”

■ Minerals/Metals-Intensive Clean Energy Transition will Potentially Face Supply Deficits
■ USD 2.1 Trillion Investment to Meet Net-Zero 2050 Demand / 6.5 Billion Tons of End-Use Materials   

„Peak Minerals/Metals“ of Net-Zero Scenario  1/2

AET-2 — 2˚C Acc. Energy Transition Scenario  

20502024
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■ Higher Diesel Consumption of Truck/Shovel Fleet | Higher Energy Effort for Grinding/Extraction per Unit Metal

■ Declining Ore Body Grades Require Ever-Increasing Tonnage to be Moved & Processed 
■ Higher Production Costs / Declining Amount of Economically Extractable Mineral

„Peak Minerals/Metals“ of Net-Zero Scenario  2/2

Caterpillar 797F — 350 tons payload / 3 MW   



510x

160x

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe6e39a19-a4e0-4084-84e9-992233760ebd_1600x1164.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe6e39a19-a4e0-4084-84e9-992233760ebd_1600x1164.png
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■ Production of Selected Minerals Critical for the Clean Energy Transition

Source: IEA /
The Role of Critical
Minerals in Clean Energy 
Transitions (2021)

Shares of top three producing countries, 2019

■ Extraction & Processing More Geographically Concentrated than for Oil & Nat. Gas (!)

Critical Mineral Dependencies
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Energy Return on Energy Invested 
Fossil Fuels vs. Renewables 

The “Net Energy Cliff”
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■ “Pyramids of Energy Needs” — Higher EROEI Values Enable Medical Care/Education/Technology Innovation/Art  etc. 
■ The “Net Energy Cliff”  Indicates the Minimum EROEI = 5…10 Required to Maintain a Complex Industrial Society 

■ Energy Supply Must Provide Sufficient Energy Surplus after Accounting for Own Energy Requirements
■ Energy Invested for Production / Transformation / Transportation   

Energy Return on Energy Invested (EROEI)

→

S     : K. Z         . /     
   .   /  .    /      -   -     - 

E2

E1

Eloss

E1

Eloss

E2

 

S     :   . T   M      /     
P       S     –         

F       
& T          G      
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■ Analysis of Energy & Material Investments for Global Transition from Fossil Fuels to RES in Electricity Sector 
■ Transition to 100% RES by 2060 Could Decrease EROEI from 12:1 to 3:1 by 2050 / Stabilizing @ 5:1

Falling-Off the „Net Energy Cliff“ (?) 

■ Resulting EROEI Level Potentially Below Threshold Required to Sustain Complex Industrial Society
■ Transition Could Drive Substantial Re-Materialization of the Economy / Deplete Critical Mineral Resources

EROEI of Full Energy System

Share of RES
by 2060

S     :  I.         -P          .       
   .   /  .    / .   .    .      

→

5.0 →
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Power Electronics 4.0
“Do More with Less”
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Power Electronics 4.0 — “Reduce-to-the-Max” 

■ Power Density  → Red. of Resources
■ Efficiency         → Red. of Energy Use
■ Robustness      → Increased Lifetime

■ New Set of Key Performance Indicators Mandatory to Meet Future Environmental Compatibility Objectives

■ Today´s Power Electronics Innovation Inherently Contributes to Lower Environmental Impact
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Copper Used in xEVs

■ Transition Si IGBTs → SiC MOSFETs — 25…30% Decrease of Power Electronics Cu Intensity  

■ Cu Used for Traction Motors, Energy Storage, Power Electronics, HV & LV Distribution, Etc.
■ ICE (2023) — 29.5kg |  BEV Robotaxi in 2034 — 73kg  (7.8kg Motor & Power Electronics)   
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Remark: Solid-State Transformers for MVac-LVdc Convers.
■ Three-phase ac-dc 1.2 MW fully-modular solid-state transformers (SST) with HF-isol. stages 
■ Comparative evaluation vs. conventional realization – 50 Hz transformer (LFT) & LV ac-dc converter

■ Lower raw material effort / Lower impact of increasing raw material costs  /  Lower carbon footprint

Copper Price

LV Power Electron. 
Learning Curve

Source: L. Imperiali, R. Wang, A. Anurag, P. Barbosa, J. W. Kolar, and J. Huber, “Comparative analysis of carbon footprints and material usage of solid-state transformers and low-frequency-
transformer-based MVac-LVdc interfaces for high-power EV charging,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Atlanta, GA, USA, Mar. 2025, pp. 1318–1325. 

Copper
Carbon 

Footprint
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Power Electronics 5.0
“Zero-Waste” Paradigm
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■ Global Population by 2050 — 10bn             2.5 kW/Capita  
■ 25´000 GW Installed Ren. Generation in 2050

■ 4x Power Electr. Conversion btw Generation & Load
■ 100´000 GW of Installed Converter Power
■ 20 Years of Useful Life 

■ 5´000 GWeq = 5´000´000´000 kWeq of  E-Waste / Year (!)
■ 10´000´000´000 $ of Potential Value  

Source: www.e-waste-
recyclers.co.in   

Source: D. Boroyevich (2010)

The            in the Room
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Growth of Global E-Waste (1)

■ Growing global e-waste streams / < 20% recycling!
■ 120’000’000 tons of global e-waste in 2050

■ E-waste represents an “urban mine” with great economic potential

Data source: The global 
e-waste monitor 2020

Source: Library of Parliament, Canada, 2019

Global, 2019

55 Mt (!) ≈ 5’500 x 
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Growth of Global E-Waste (2)

■ Growing global e-waste streams → 120’000’000 tons of global e-waste in 2050
■ Increasingly complex constructions → Little repair or recycling

■ Growing global e-waste streams → Regulations mandatory (!)

Source:  

Source:  
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The Paradigm Shift
■ Linear Economy
● Take – make – dispose 

● Resources returned into the product cycle at end of life

■ Circular Economy
● Perpetual flow of resources
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LCA: Life Cycle Assessment (1)
■ Quantification / benchmarking of eco-design & circular economy approaches

■ Scope of LCA can include 
● All life-cycle phases (cradle to grave) or
● Individual life-cycle phases (cradle to gate or gate to gate)

Image source: SIEMENS AG, “Ecodesign: Multiplying impact, shaping the world.” 2023.
https://assets.new.siemens.com/siemens/assets/api/uuid:f7d929ad-971f-44df-ac51-7783cc28dac7/Ecodesign-WP.pdf

https://assets.new.siemens.com/siemens/assets/api/uuid:f7d929ad-971f-44df-ac51-7783cc28dac7/Ecodesign-WP.pdf
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LCA: Life Cycle Assessment (2)
■ Quantification / benchmarking of eco-design & circular economy approaches

Source: M. Damiani, N. Ferrara, and F. Ardente, “Understanding product environmental footprint and organisation environmental footprint methods,” 
Publications Office of the European Union, Luxemburg, JRC129907, 2022. https://data.europa.eu/doi/10.2760/11564

1 2 3

4
● LCI – Life Cycle Inventory

Compilation & quantification of 
inputs and outputs for a product 
throughout its life cycle

2 ● LCIA – Life Cycle Impact Assessment
Assignment of LCI results to 
(environmental) impact categories / 
Aggregation involves weighting 
factors & value choices

3

https://data.europa.eu/doi/10.2760/11564
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LCA Example: Carbon Footprint of a 150-kW PV Inverter

■ Production phase / embodied carbon footprint of 903 kg CO2eq (15…20% of life-cycle carbon footprint)
■ Use phase contributes >80% to life-cycle carbon footprint (conversion losses & standby/night consumption)

■ 150 kW rated power for typ. 225 kWp PV system

Source: SMA Solar Technology AG, “Sunny Highpower PEAK3 life cycle assessmnet (LCA),” 2023. https://files.sma.de/assets/280662.pdf

Embodied Carbon Footprint

https://files.sma.de/assets/280662.pdf
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LCA Example: Carbon Footprint of a 150-kW PV Inverter

■ Production phase / embodied carbon footprint of 903 kg CO2eq (15…20% of life-cycle carbon footprint)
■ Use phase contributes >80% to life-cycle carbon footprint (conversion losses & standby/night consumption)

■ Small / lightweight components with large contributions to carbon footprint (!)

Source: SMA Solar Technology AG, “Sunny Highpower PEAK3 life cycle assessment (LCA),” 2023. https://files.sma.de/assets/280662.pdf

Mass Embodied Carbon Footprint

PCBs 23.8% ICs 8.6% (!)(!)

PCBs 2.2%

ICs 0.1%

w/o components

https://files.sma.de/assets/280662.pdf
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New Holistic Design Procedure
Multi-Objective Optimization with Environmental Impacts as New Performance Indicators
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System Design Challenge

■ Mutual coupling of performance indicators → Trade-off analysis!

■ For optimized systems, it is not possible to improve several perf. indicators simultaneously

Use-phase
environmental
impact

Embodied
environmental
impact

Lifetime /
Replacements

Source: J. W. Kolar, F. Krismer, H. P. Nee, “What are the "Big CHALLENGES" in Power Electronics?,” Presentation 
at the 8th Int. Conf. Integr. Power Electron. Syst. (CIPS), Nuremberg, Germany, Feb. 2014. .
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Abstraction of Power Converter Design

■ Converter Design: Mapping of 
multi-dimensional design space into a 
multi-dimensional performance space

Performance space

Design space

Source: J. W. Kolar, J. Biela, S. Waffler, T. Friedli, and U. Badstuebner, “Performance trends and limitations of power 
electronic systems,” in Proc. 6th Int. Integr. Power Electron. Systems Conf. (CIPS), Nuremberg, Mar. 2010.
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Modeling of Converter Designs

■ System/circuit & component models
■ Iteration over all combinations of design degrees of freedom 

Source: J. W. Kolar, J. Biela, S. Waffler, T. Friedli, and U. Badstuebner, “Performance trends and limitations of power 
electronic systems,” in Proc. 6th Int. Integr. Power Electron. Systems Conf. (CIPS), Nuremberg, Mar. 2010.
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Multi-Objective Optimization of Converter Designs

■ Pareto front: Boundary of the feasible performance space
■ Mission profiles: Power loss → Energy loss / Life-cycle cost (!)

Source: R. M. Burkart and J. W. Kolar, “Comparative life cycle cost analysis of Si and SiC PV converter systems based on advanced η-
ρ-σ multiobjective optimization techniques,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4344–4358, Jun. 2017.

■ Typically considered performance indices:

σ

η Efficiency in %
ρ Volumetric power density in kW/dm3

γ Gravimetric power density in kW/kg
σ Cost density in W/€
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Design Space Diversity

■ Very different design space coordinates map to very similar performance space coordinates

● Example: Google Littlebox design optimization w. PWM operation / Mutual comp. of HF and LF loss contrib.

Source: J. W. Kolar, D. Neumayr, D. Bortis, M. Guacci, and J. Azurza Anderson, “Google Little-Box 
Reloaded,” Keynote at the 10th Int. Conf. Integr. Power Electron. (CIPS), Stuttgart, Germany, Mar. 2018.

(!)
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Design Space Diversity: 3L & 7L PV Inverters
■ Two concepts / similar specs — 12.5 kW, 650…720 V DC, CISPR 11 Class A — Similar perf. (ηCEC = 99.1%)

■ Differences in environmental impact?

99.4%
99.35%

7-Level All-Si HANPC PV Inverter
99.35%, 3.4 kW/dm3

3-Level All-SiC T-Type PV Inverter
99.4%, 2.4 kW/dm3

Source: J. A. Anderson, D. Marciano, J. Huber, G. Deboy, G. Busatto, and J. W. Kolar, “All-SiC 99.4%-efficient three-phase T-type
inverter with DC-side common-mode filter,” Electron. Lett., vol. 59, no. 12, p. e12821, 2023, doi: 10.1049/ell2.12821.
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A Posteriori  LCA of 3L & 7L PV Inverters (1)
■ Two concepts / similar specs — 12.5 kW, 650…720 V DC, CISPR 11 Class A — Similar perf. (ηCEC = 99.1%)

■ Generic comp. models / ecoinvent database & lit. →Widely varying embodied carbon footprint (GWP) res. (!) 
■ Data availability / quality as key challenge!

2.4 kW/dm3, 11.8 kg 3.4 kW/dm3, 4.6 kg 

(!)

(!)

GWP: Global Warming Potential



54

Carbon Footprint is Not Enough!
■ Life cycle impact assessment (LCIA) phase of LCA — Environmental profile w. wide range of perf. indicators

■ Example: ReCiPe 2016
Three areas of protection / endpoint categories

● Human Health
Damage to Human Health (DHH)
in Disability-Adjusted Loss of Life Years (DALY)

● Ecosystem Quality
Damage to ecosystem quality (DESQ)
in Time-Integrated Species Loss (species∙yr)

● Resource Scarcity
Damage to resource availability (DRA)
in surplus cost / dollars ($)

■ Value choices (individualist / hierarchist / egalitarian) affect time horizon, included effects, etc.
■ Alternative frameworks like EU Environmental Footprint (EF 3.1) exist

Source: Huijbregts et al., ReCiPe 2016 v1.1 Report
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A Posteriori  LCA of 3L & 7L PV Inverters (2)
■ Two concepts / similar specs — 12.5 kW, 650…720 V DC, CISPR 11 Class A — Similar perf. (ηCEC = 99.1%)
■ Life Cycle Impact Assessment (LCIA) w. ReCiPe framework:
● Damage to ecosystems (DESQ) | Damage to human health (DHH) | Damage to resource availability (DRA)

■ Environmental footprint of converter as aggregate of components’ environmental footprints

Normalized scales due to ecoinvent licensing restrictions.

Generic Comp. Mod.
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A Priori Consideration of Environmental Impacts in the Design Process?
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A Priori LCA Example: 10-kW Three-Phase AC-DC PEBB

■ Key power electronic building block (PEBB) for three-phase PFC rectifiers & inverters

■ Degrees of freedom:

10 kW / 400 V ac / 800 V dc

■ Assumptions:− Switching freq. [25…700 kHz]
− Rel. Ind. Peak cur. ripple [0.25…1.5]
− Var. transistor chip area
− Variable ind. size (N87; solid/litz)

− Junction temp. @ 120 °C
− Ambient temp. 40 °C
− Necessary heat sink vol. via 

CSPI = 25 W/(K dm3)
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Multi-Objective Optimization Including Env. Impacts (1)
■ Trade-Offs

− Efficiency vs. power density
− Efficiency vs. environmental 

compatibility regarding 
embodied GWP (carbon 
footprint)

■ Env. Impacts with high 
uncertainties due to data 
availability/quality

(!)
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Multi-Objective Optimization Including Env. Impacts (2)
■ Trade-Offs

− Efficiency vs. power density
− Efficiency vs. environmental 

compatibility regarding 
embodied GWP (carbon 
footprint)

■ Env. Impacts with high 
uncertainties due to data 
availability/quality

(!)
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Multi-Objective Optimization Including the Use Phase

■ Life-cycle carbon footprint strongly depends on electricity mix and mission profile / usage intensity

■ Design should consider use phase for best life-cycle performance
■ Analogy to total cost of ownership (TCO) perspective

Scenario: 8 hours per day at full load Scenario: 8 hours per day at full load
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Comprehensive Environmental Impact Profiles
■ Different bridge-leg topologies — 2-Level (1200-V SiC) | 3-Level (650-V SiC) | 7-Level (200-V Si)

■ Embod. env. footprint of 2L/3L/7L-designs with η ≈ 99% and max. env. compat. εGWP in W / kg CO2eq
■ Same efficiency via different usage of act./pass. components — Different environmental impact profile!

ReCiPe 2016:
DESQ—Damage to ecosystems 
DHH—Damage to human health
DRA—Damage to resource avail.



62

Future Performance Indicators
■ Assuming 20+ years lifetime → Systems installed today reach end-of-life by 2050 (!)
■ Life cycle assessment (LCA) mandatory for all future system designs

■ Complete set of new performance indicators
− Environmental impact [kg CO2eq / kW, …]
− Resource efficiency [kgxx / kW]
− Embodied energy [kWh / kW]
− TCO [$ / kW]
− Power density [kW/dm3, kW/dm2]
− Mission efficiency [%]
− Failure rate [h-1]

■ Mission/location-specific trade-off betw. embod. vs. life-cycle environ. impact — Losses / Reliability / Lifetime
■ Compatibility with a circular economy (!) — Repairability / Reusability / Recyclability
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Power Electronics 5.0: “Zero Waste”
■ Including 4R into the design process — Repair / Reuse / Refurbish / Recycle
■ Lifetime extension / reliability considerations are a key design aspect

■ Life-cycle cost perspective — Potentially advantageous for suppliers & customers
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Sustainability Potential

■ 2nd circular economy principle: Circulate products and materials at their highest values

Source: SIEMENS AG, “Towards a circular economy for industrial electronics.” Reuters Events, Jun. 2023.
https://www.siemens.com/global/en/company/about/businesses/smart-infrastructure/downloads-events/towards-a-circular-economy-for-industrial-electronics-white-paper.html

■ High reliability / lifetime extension → Lifetime / aging modeling

https://www.siemens.com/global/en/company/about/businesses/smart-infrastructure/downloads-events/towards-a-circular-economy-for-industrial-electronics-white-paper.html
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Integration: Minimize Size / Initial Resource Usage 

■ Maximum integration facilitates extreme power densities (10…100 x conv.) 
● Example: 30 kW non-isolated fixed-ratio conversion (400 V to 800 V) 

in 92 x 80 x 7.4 mm3 — 550 kW/dm3 and 130 kW/kg

■ Low initial material usage  Difficult material separation
■ Importance of recyclability?

Sources: vicorpower.com, US6930893B2 

Example: Isolated dc-dc
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The Complexity Challenge

■ Technological Innovation — Increasing level of complexity & diversity of modern products
■ Exponentially accelerating technological advancement (R. Kurzweil) 

■ More than 60 Metallic Elements Involved in Pathways for Substitution of Conv. Energy Systems 
■ Ultra-compact systems / functional integration — Major obstacle for material separation!? 

Source:
Materials Critical

to the Energy Industry
An introduction

Pr
od

uc
t C

om
pl

ex
ity
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Remark: Electronic Component Reclaim / Reuse

■ Electronic waste recycling today: Shred / incinerate / extract most valuable resources — if at all!
■ Alternative: Reclaim & refurbish / Desolder & re-ball

■ Challenging logistics etc. for reclaiming PCBs from customers / Circular economy thinking needed 
■ Business case today especially for scarce / valuable components

Source:      ://       x.   /         -       /

https://retronix.com/component-reclaim/
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Modularity: Upgrade, Reuse, Repair, …

■ Module design for ease of disassembly: Maintainability, upgradability, repairability, reusability, recyclability

● Grouping of components according to reliability level and expected lifetime / level of reusability or recyclability / …
● Standardized interfaces / Mechanically loose connections  Electrical characteristics
● Potential for leveraging economies of scale to compensate interface costs

Source: T. T. Romano, T. Alix, Y. Lembeye, N. Perry, and J.-C. Crebier, “Towards circular power electronics in the
Perspective of modularity,” Procedia CIRP, vol. 116, pp. 588–593, Jan. 2023, doi: 10.1016/j.procir.2023.02.099.
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Design for Repairability & Circularity

■ Eco-design — Reduce environmental impact of products, incl. life-cycle energy consumption
■ Re-pair / Re-use / Re-cycle / disassembly / sorting & max. material recovery, etc. considered
■ EU eco-design directive (!)

■ — Modular design / man. replaceable parts / 100% recycl. of sold products / fairtrade materials
■ laptop  “You should be able to fix your stuff.”  — Modular design / man. replaceable parts
■ “80% of environmental impact of products are locked-in at the design stage” —

Source: https://de.ifixit.com/

Source: 
www.ligman.com/  

J. Thackara, In the bubble: Designing in a complex 
world. Cambridge, MA, USA: The MIT Press, 2006. 

Source: Life Cycle Assessment of the Framework Laptop 2022, Fraunhofer IZM
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Conclusion & Outlook
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Power Electronics 5.0

■ Power Electronics 1.0  → Power Electronics 5.0
■ X-Technologies  &  X-Concepts 
■ New main performance indicators (!) 

■ Life-cycle analysis / circular economy compatibility are key for sustainable Power Electronics 5.0

Source: J. Huber, L. Imperiali, D. Menzi, F. Musil, and J. W. Kolar, “Energy efficiency 
is not enough!,” IEEE Power Electron. Mag., vol. 11, no. 1, pp. 18–31, Mar. 2024.
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CEC Power Electronics Roadmap 
■ Environmental awareness as integral part of environmentally conscious power electronics design

■ Automated design | On-line monitoring  | Preventive maintenance | Digital product passport

“Net-Zero CO2 is NOT Enough”
− Max. Repairability | Reusability | Recyclability 
− Min. scarce materials, min. toxic waste

Circular-Economy-Compatible (CEC) 
Power Electronics

Full Environmental Footprint 
Based on Smart Datasheets
− Seamless integr. of comp. models in multi-obj. opt.
− Full a priori LCIA / environmental footprint
− Standardization / single source of truthGeneric Life-Cycle

Impact Analysis (LCIA)
− New KPIs in multi-obj. opt. 
− Data sources / quality / abstraction / 

generalization as key challenges Classical ηρ-Pareto Optimization / Design
− Manual a posteriori LCA of complete converters



73

■ Globalization / Global Trade — Complex Couplings / Interdependencies of Main Economies
■ No Immediate Reward BUT Massive Costs / Political Challenges of NZ-by-2050 Trajectories

Economic Challenges of NZ by 2050

■ Environmental Impact Aggregates Over Time — No Serious $$$-Consequences / “Tragedy of Commons”
■ “Prisoner´s Dilemma” — Why Take Action If You Can´t Be Sure Other Countries Will Act As Well? 
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The NZ-by-2050 “Marshmallow Test”
■ “You Can Have One Marshmallow Now, OR, If You Wait, You Can Have Two” (!)
■ Experiment Measuring Children’s Ability to Self-Control / Delay Gratification (W. Mischel / Stanford / 1960s)

■ “You Can Have One Marshmallow Now, OR, If You Wait, Others Will Take It” (!) 
■ “Instant-Effortless-Everything”- Society Might Face Serious Challenges Passing the NZ-by-2050 Marshmallow Test

S     :      ://   .  b      .   /
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■ Power Electronics Engineers are the Rocket Scientists of the 2020´s (!) 
■ “Transformational Industrial Clusters” (El. Energy, Chemistry, Microbiology, etc.)  & “First Mover Coalitions” 

■ Aim for a Net-Zero/Environmentally-Neutral Integrated Multi-Carrier Energy System
■ Full “Circularity” (Closed Carbon Cycle & Raw Materials Cycle, etc.) / Sustainability / etc. 

Develop a Global “Clean Energy Moonshot Spirit”  

„We choose to go to the Moon
in this decade, …, not because  
they are easy, but because they 
are hard; because that goal 
will serve to organize and  
measure the best of our 
engineers and skills – because 
that challenge is one we are
willing to accept, one we are
unwilling to postpone, and
one we intend to win!“
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■ Very Wide Range of Topics — WBG Power Semiconductors / Power-to-Chemicals / Red.-CO2 Steel etc. 
■ “Green Growth” Strategy   — 14  Focus Areas Announced (2021) – Asia Zero Emission Community (2023)

■ “Challenge Zero” — A New Action by Japanese Industry in the Field of Climate Change (2020)
■ 200 Members / 400 Projects on Zero Emission & Transition Technologies 

Challenge Zero & “Green Growth” Strategy Japan 
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■ Highly Interdisciplinary  BUT  Fascinating Opportunities for Future Power Electronics Applications (!) 
■ High-Eff./High-Dyn. Chemistry — Plasma Techn., Microwave Reactors, Pulsed Power, Cryog. Power Electr., etc.        

■ Sometimes Named  “Horseman of the Climate Apocalypse” — 30 Trillion USD to Achieve NZ by 2050
■ Collectively Responsible for ≈30% of World´s CO2 Emissions (Cement, Steel, Chemicals, Aviation etc.)

Power Electronics for New / “Hard-to-Abate” Sectors 

S     : 

     ://   .            
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Thank You!



79

Further Reading
− L. Imperiali, R. Wang, A. Anurag, P. Barbosa, J. W. Kolar, and J. Huber, “Comparative

analysis of carbon footprints and material usage of solid-state transformers and low-
frequency-transformer-based MVac-LVdc interfaces for high-power EV charging,” in Proc.
Appl. Power Electron. Conf. Expo. (APEC), Atlanta, GA, USA, Mar. 2025.

− J. Huber, L. Imperiali, D. Menzi, F. Musil, and J. W. Kolar, “Life-cycle carbon footprints of
low-voltage motor drives with 600-V GaN or 650-V SiC power transistors,” in Proc. Int.
Conf. Integr. Power Syst. (CIPS), Düsseldorf, Germany, Mar. 2024.

− J. Huber, L. Imperiali, D. Menzi, F. Musil, and J. W. Kolar, “Energy efficiency is not enough!,”
IEEE Power Electron. Mag., vol. 11, no. 1, pp. 18–31, Mar. 2024.

− L. Imperiali, D. Menzi, J. W. Kolar, and J. Huber, “Multi-objective minimization of life-cycle
environmental impacts of three-phase AC-DC converter building blocks,” in Proc. IEEE
Appl. Power Electron. Conf. Expo. (APEC), Long Beach, CA, USA, Feb. 2024.

− J. W. Kolar, L. Imperiali, D. Menzi, J. Huber, and F. Musil, “Net zero CO2 by 2050 is NOT
Enough (!),” Keynote at the 25th Europ. Conf. Power Electron. Appl. (EPE), Aalborg,
Denmark, Sep. 2023.
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