

Lifetime Model for Solder Layers

I. Kovačević-Badstübner, <u>A. Stupar</u>, and J.W. Kolar

ETH Zurich, Switzerland Power Electronic Systems Laboratory www.pes.ee.ethz.ch / kovacevic@lem.ee.ethz.ch

Overview

- Reliability of Power Modules
- Failure Mechanism of Power Modules
 - **Power Cycling (PC) tests, Temperature Cycling (TC) tests**
- Analytical vs. Physical Lifetime Modeling
- Physical lifetime model based on Clech's algorithm for Solder Interconnections
- Solder Interconnection Failure
 - Solder equations (elastic, plastic and creep deformation)
 - **Energy-based modeling**
- Lifetime Estimation based on PC tests

2/23

Reliability of Power Modules

Power Module: layers with typically different thermal constants have great influence on heating and cooling rate of module

 Thermo-mechanical Stress: temperature gradients and CTE (Coefficient of Thermal Expansion) difference between layers

- Mission Profile
- Lifetime Modeling

3/23

Failure of Power Modules

- Bond wire fatigue (lift off, heel cracking)
- Aluminium reconstruction
- **Brittle cracking, fatigue crack propagation**
- **Corrosion of interconnections**
- **Solder fatigue**
- Burnout failures

Ref [D. C. Katsis,"Thermal Characterization of Die-Attach Degradation in the Power MOSFET"]

Ref [Lefranc, G., et al. (2003) "Aluminium bondwire properties after 1 billion cycles"]

Ref [Lefranc, G., eta al. (2003) "Aluminium bond-wire properties after 1 billion cycles"]

4/23

Ref [U. Scheuermann, R. Schmidt (EPE 2011), "Impact of Solder Fatigue on Module Lifetime in Power Cycling Tests"]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

108

N_f- Number of Cycles to Failure

ETH

Lifetime Modeling – Analytical Models

Basic N_f Model: Coffin-Manson

 $N_{\rm f} = a \cdot (\Delta T_{\rm cyc})^{-n}$ $N_{\rm f} = a \cdot (\Delta T_{\rm cyc})^{-n} \exp(\frac{E_{\rm A}}{K_{\rm B} T_{\rm im}})$

60

80 100

40

 ΔT_i - Junction Temperature Swing

∆Tj [K]

Rain Flow Algorithm (counting ΔT_{cyc} in mission profile) + Miner's rule

$$\frac{1}{MTTF} = \sum \frac{n_i}{N_{fi}}$$

5/23

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 10^{4}

20

Accelerated Power Cycling Tests

Accelerated Power Cycling Tests

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Lifetime Modeling – Physical Models

- Failure and deformation mechanism have to be known in advance
 - * Bond Wire Lift-off : Crack Propagation
 - * Solder Failure: Stress-/Strain-/Damage /Energy-based model
- Thermo-mechanical behaviour: <u>stress</u> (τ, σ) and strain (γ, ϵ)

7/23

Normal Stress $\sigma = F\sin\theta/A$ Normal Strain $\epsilon = \delta/L$ Shear Stress $\tau = F\cos\theta/A$ Shear Strain $\gamma = \Delta L/L$

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Physical Lifetime Modeling

Ref [M. Ciappaet al., "Lifetime Prediction and Design of Reliability Tests for High-Power Devices in Automotive Applications"]

ETH

Stress-Strain Relation for Solder Joint

- How does stress appear and act within materials?
- **Correlate stress/strain values with** observed failures?
- Hysteresis: stress-strain response of solder joint to periodical temperature cycling

Shear strain

Ref [M. Hall, "Forces, moments, and displacements during thermal chamber cycling of leadless ceramic chip carriers soldered to printed boards"]

Energy based models

1 max $\Delta W_{tot} =$ $au d\gamma$ min

ЕТН

Proposed Lifetime Modeling Approach

- Main idea of energy-based models
 - * ΔW_{acc} : Total deformation energy accumulated within module
 - * End-of-Life (EOL): device fails when deformation work ΔW_{acc} reaches critical value ΔW_{tot}
- Clech's algorithm
- Constitutive solder equations

11/23 —

Solder Physics – Equations (1)

Fatigue: elastic and plastic time-independent deformation

Solder Physics – Equations (2)

Stress-Reduction Lines of Solder Material

- **Solder geometry properties:** height-*h*, length-*L*, area-*A* of solder joint
- Geometry dependent parameters which has to be found: Mechanical modeling of power module based on Finite Element Analysis

 $\tau = \mathbf{K}(\gamma_{\mathsf{th}}(T) - \gamma)$

$$\begin{split} & \overbrace{\gamma_{shear} + \frac{\tau_{shear}}{K} = D_1 \cdot (T - T_0)}_{K \approx \frac{h}{A}, D_1 \approx L(\frac{1}{CTE_1} - \frac{1}{CTE_2})} & \overbrace{\gamma_{th}(1)}^{K \gamma_{th}(2)} & \overbrace{\tau_{th}(1)}^{K \gamma_{th}(1)} & \overbrace{\tau_{th}(1)}^{K \gamma_{th}(1)$$

Numerical Modeling of Stress-Strain

15/23

Lifetime Model Parameterization

Input: 3 PC Tests

 $(T_1(t), N_{f1}), (T_2(t), N_{f2}), (T_3(t), N_{f3})$

• $W_{totk} = N_{fk} (W_{hysk})^m$, k = 1, 2, 3

- **Exponent** *m* depends on solder material
- Optimization routine is used to find best

$$\mathbf{set}(K,D_1):r_{ji}=\frac{W_{totj}}{W_{toti}}\approx 1$$

Relative Lifetime Estimation

$$r = \frac{\int \tau_1 \mathrm{d}\gamma_1}{\int \tau_2 \mathrm{d}\gamma_2}$$

Input Data for Lifetime Estimation

Solder material data from Literature

X. Q. Shi et al., "Creep Behaviour and Deformation Mechanism Map of SnPb Sutectic Solder Alloy," 2003; J-P. Clech, "An obstacle controlled creep model for SnPb and Sn-based lead-free solders," 2004;

Power Cycling (PC) Data: Temperature Profiles - T_{solder}(t) & Number of Cycles to Failure - N_f

Solder geometry data:

<u>First task:</u> Parameterization of the proposed lifetime model to determine geometry solder parameters \rightarrow Searching for optimal parameter set [K, D₁] <u>Second task:</u> Lifetime estimation for given PC and mission profiles

Verification based on PC Test Data

- PCs with solder (chip solder layer) failure as dominant failure mode
- PC Temperature Profiles: T_{solder}(t) extracted based on thermal model of power module
- [K, D₁] selected based on min parameterization error (for m = 2.2, $W_{totk} = N_{fk}(W_{hvsk})^m$)
- PC 1-3 used for parameterization: PC1: ΔT = 115 K, T_{max} = 155°C, t_{on} = 50s PC2: ΔT = 70 K, T_{max} = 150°C, t_{on} = 0.95s PC3: ΔT = 70 K, T_{max} = 150°C, t_{on} = 5s

Results for PC1-3

Error of parameterization = 1.71 $W_{tot1}, W_{tot2}, W_{tot3} \rightarrow (N_{fmin}, N_{fmax})$ $N_{f1} = 31 \ 332,$ $N_{fcalc1} = (31 \ 302, \ 38 \ 762, \ 53654)$

$$N_{f2} = 220\ 279$$

 $N_{fcalc2} = (128\ 514,\ 159\ 142,\ 220\ 279)$

 $N_{f3} = 168 \ 390,$ $N_{fcalc3} = (168 \ 390, 208 \ 521, 288 \ 627)$

ETH

Results for PC1-3

Strain deformation under given T(t)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

20/23 —

Lifetime Estimation based on PC1-3

Verification for PC A-E

PCA: $\Delta T = 134$ K, $T_{max} = 174^{\circ}$ C, $t_{on} = 64.5$ s $N_{fA} = 28780$, (23216 - 28749 - 39793) $\delta_{max} = -19\%$

PCB: $\Delta T = 67 \text{ K}$, $T_{\text{max}} = 146^{\circ}\text{C}$, $t_{\text{on}} = 0.95\text{s}$ $N_{\text{fB}} = 248 710$, (140 949 - 174 541 - 241 594) $\delta_{\text{max}} = -0.3\%$

PCC: $\Delta T = 70 \text{ K}$, $T_{\text{max}} = 150^{\circ}\text{C}$, $t_{\text{on}} = 1.2\text{s}$ $N_{\text{fC}} = 234\ 632$, (122\ 054 - 151\ 142 - <u>209\ 205</u>) $\delta_{\text{max}} = -10.8\%$

PCD: $\Delta T = 73K$, $T_{max} = 150^{\circ}C$, $t_{on} = 2.9s$ $N_{fD} = 149\ 125$, (164\ 966\ - 204\ 281\ - 282\ 758) $\delta_{max} = -9.6\%$

PCE: $\Delta T = 109K$, $T_{max} = 148^{\circ}C$, $t_{on} = 13.6s$ $N_{fE} = 38\ 441$, $(31\ 393 - 38\ 875 - 53\ 809)$ $\delta_{max} = -18.3\%$

PCX: $\Delta T = 136K$, $T_{max} = 176^{\circ}C$, $t_{on} = 2s$ $N_{fX} = 21.956$, (21.853 - 27.061 - 37.457) $\delta_{max} = -23.5\%$ ■ Fast or slow temperature rate during *T*_{max} level determine strain development

Longer pulse: stationary situation is reached, more deformation

■ Parameter △T influence lifetime

ETH

$N_{\rm f}$ vs. ΔT Curves

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MATLAB Graphical User Interface

- MATLAB GUI Options
 - Search Parameters Procedure
 - Load Input Data
 - **Set Simulation Settings**
 - Modeling for selected [K, D₁]
 - **PC** Lifetime Estimation
 - Analyze Stress-Strain Response
 - **Rel. Lifetime Calculation**
 - **Readme File**

gui	
Search Procedure START	Input DATA
PROGRAM STATUS Solder data properties have to be loaded OR start simulation with previous simulation results	Power Cylcing 1 Properties Image: Cylcing 1 Properties Number of Cycles to Failure (Nf) = 305000 Tmin [°C] = 60 Duty cycle (don) = 0.57 Cycling Frequency (f) = 0.185
Unknown Solder Parameters	Plot Temperature Profile 49 50 51 52 53
Kmax = 9.9E3 Kmin = 0.8E3	45 55 51 52 55 time [s]
D1max = 9.9E-5 D1min = 1E-5 Kopt = D1opt = error =	Power Cylcing 2 Properties 120 Number of Cycles to Failure (Nf) = 110000 Tmin [*C] = 60 Duty cycle (don) = 0.71 Tmax [*C] = 110 Cycling Frequency (f) = 0.071 Plot Temperature Profile 80
START : search [K, D1] procedure for SnAg START : search [K, D1] procedure for SnPb	Power Cylcing 3 Properties 126 128 130 132 134 136 138 Number of Cycles to Failure (Nf) = 25600 Tmin [*c] = 60 g 100
Simulation Settings Convergence Condition = 0.0008 Number of Search Loops = 10	Duty cycle (don) = 0.87 Tmax [°C] = 110 Cycling Frequency (f) = 0.029 Plot Temperature Profile 60
	Load Input Data - SnAg Solder Load Input Data - SnPb Solder time [s]
Select Parameter Set	Life Time Estimation
See all calculated [K, D1]	Select Power Cycling Test: Dufy Cycle (don) = 1 Cycling Test: Cycling Test: 1
K = D1 =	Select Power Cycling Test for Nf -estimation T['C] = 0.5
err =	Nf Expected =
Select Parameter Set [K, D1] to plot hysteresis	Nf Estimation =
Plot Hysteresis Open Input Data File	Start NF-Estimation Select PC: Analyze Stress vs. Strain Select PO: Select PC: Analyze Stress vs. Strain Select PO:
READ ME	Mission Profile Analyse
About Program:	Select Mission Profile 1: Select Mission Profile 2:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

Thank You !

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich