

Key Enablers for Ultra-Compact Server Power Supplies

Gustavo C. Knabben, et. al.

Power Electronic Systems Laboratory, ETH Zurich Zurich, Switzerland Knabben@lem.ee.ethz.ch

October 2nd, 2020

Key Enablers for Ultra-Compact Server Power Supplies

G. C. Knabben, J. Schäfer, J. W. Kolar

Power Electronic Systems Laboratory, ETH Zurich Zurich, Switzerland Knabben@lem.ee.ethz.ch M. J. Kasper, G. Deboy

Infineon Technologies Villach, Austria

October 2nd, 2020

Wide-Bandgap Semiconductors

GaN and SiC devices allowing to improve performance in various power electronic applications 3

ETH zürich

State-of-the-Art PSU for Server Systems

- **Si-based supplies**
- ► 1+1 redundancy scheme
- ► 12-V output, kW-range
- **High efficiency standards**
 - 80 Plus Titanium

- 96% peak efficiency @ 50% load
- **Defined front frame, variable length**
 - 40 mm X 72 mm X 265 mm @ 3.0 kW 185 mm @ 2.4 kW
- ► High power densities
 - from 50 to 70 W/in³

Next-Generation PSU for Server Systems

- **GaN-based supplies**
- ► 1+1 redundancy scheme
- ► 12-V output, kW-range
- **High efficiency standards**
 - 80 Plus Titanium

- 96% peak efficiency @ 50% load
- Defined front frame, shortest length
 - 40 mm X 72 mm X 170 mm @ 3 kW
- **Ultra-high power densities**
 - Above 100 W/in³

- ► Is GaN a key enabler?
- Are there other players?

Presentation Content

- **System-Level Analysis**
- DC/DC-Stage Analysis
- **DC/DC-Stage Demonstrator**
- AC/DC-Stage Analysis
- Conclusion

System-Level Analysis

- **Reason for Two Conversion Stages**
- **PSU Volume Partitioning**

Reason for Two Conversion Stages

- ► Hold-Up Time criterion
 - Requires a component that stores energy
 - Defines the DC/DC-stage input voltage range

- ► 96% system efficiency
 - AC/DC: 99%
 - **DC/DC: 97%**

PSU Volume Partitioning

► Targeted form-factor

■ 40 mm x 72 mm x 170 mm (100 W/in³ @ 3kW)

DC/DC module
P₀ = 1.5 kW, η_{50%} = 97%, ρ = 350 W/in³

Challenges on GaN-based DC/DC stages?

DC/DC-Stage Analysis

Impacts of Choosing GaN Devices

- **•** Topology as a Key Enabler
- **Control** as a Key Enabler
- Magnetics as Key Enablers
- **Design & Efficiency**

Impacts of Choosing GaN Devices

Topology & Control
Low I_{RMS} / |I|_{avg} ratios
Soft switching
Easy to control

ETH zürich

► CoolGaN[™] Devices

- Small on-state resistances
- Small capacitances
- No reverse recovering

Topology as a Key Enabler

► Hard-switched, buck-based DC/DC converters

Soft-switched, **LLC-based DC/DC converters**

Wide V_{dc} range
Lower efficiency

12

Higher efficiency
Narrow V_{dc} range

Control as a Key Enabler

Boost-Mode (LLC-mode)

Boundary Conduction Mode (BCM)

Discontinuous Conduction Mode (DCM)

Control as a Key Enabler

Source: G. Knabben et. al., "Wide-Input-Voltage-Range, 3 kW DC-DC Converter with Hybrid LLC & Boundary / Discontinuous Mode Control", Proc. APEC 2020

ETH zürich

Litz-wire or PCB-winding transformer?

15

Source: M. Kasper et. al., "Ultra-high Power Density Server Supplies Employing GaN Power Semiconductors and PCB-Integrated Magnetics", Proc. CIPS 2020

ETH zürich

Number of turns?

$$\hat{J} = \frac{\pi I_{\rm o} N_{\rm s}}{2A_{\rm w}} \qquad \hat{B} = \frac{V_{\rm o}}{4f_{\rm s} N_{\rm s} A_{\rm c}}$$

Single-turn secondary windings!

16

Number of windings?

$$\hat{J}_{4-\text{mult}} = \frac{\hat{J}_{\text{single}}}{2} \qquad P = \frac{1}{2\sigma} \iiint \hat{J}^2 \, dV$$

Losses reduce proportionally to the number of windings!

Matrix transformer

17

Source: G. Knabben et. al., "New PCB Winding 'Snake-Core' Matrix Transformer for Ultra-Compact Wide DC Input Voltage Range Hybrid B+DCM Resonant Server Power Supply," Proc. PEAC 2018

PCB-winding inductor?

Source: M. Kasper et. al., "Ultra-high Power Density Server Supplies Employing GaN Power Semiconductors and PCB-Integrated Magnetics", Proc. CIPS 2020

CFFC PCB Inductor

18

Source: J. Schäfer et. al., "Introduction of the CFFC -Compensating Fringing Field Concept and its Application in PCB Winding Inductors", ECPE Workshop 2020

Custom ferrite cores

Ferrite machining

Water-cooled, 1 mm diamond drill bit

Design & Efficiency

DC/DC module

- $V_{\rm dc}$ = 400 V, $V_{\rm o}$ = 12 V, $P_{\rm o,100\%}$ = 1.5 kW
- 90.0 mm X 68.0 mm X 11.5 mm
- $\eta_{50\%}$ = 97%, ρ = 350 W/in³

20

Measured efficiency?

DC/DC-Stage Demonstrator

- **Design Challenges**
- Measurements
- Loss-Model Improvement

- **Shielding layers**
- ► Inter-winding capacitance
- Output layers
- Current transformer
- Thermal management
- **Synchronous rectification**

- **Shielding** layers
- ► Inter-winding capacitance
- Output layers

Current transformer

Detection of current zero-crossing in BCM

Low CM Impedance

ETH zürich

- Thermal management
 - Cooling by convection (fan)
 - Cooling by conduction (PSU walls)

• $V_{\rm dc}$ = 400 V, $V_{\rm o}$ = 12 V, $P_{\rm o}$ = 1.5 kW

Synchronous rectification
MAX17606, Maxim Int

26

 Premature turn-off due to ringing

Synchronous rectification
NCP4306, On Semi

27

Body-diode conducts for a significant time

Measurements

ETH zürich

Measurements

Efficiency
V_{dc} = 400 V, V_o = 12 V

Mismatching between simulated and measured waveforms

- Accuracy of ferrite machining different resonant and magnetizing inductances
- SR body diodes conducting for a significant time
- Significant losses of PCB tracks that are not part of the model
- **Difficulty in predicting transformer-core temperature**

Loss-Model Improvement

Efficiency

• $V_{\rm dc}$ = 400 V, $V_{\rm o}$ = 12 V

Mismatching between simulated and measured waveforms

- Accuracy of ferrite machining different resonant and magnetizing inductances
- SR body diodes conducting for a significant time
- Significant losses of PCB tracks that are not part of the model
- Difficulty in predicting transformer-core temperature

Loss-Model Improvement

Loss breakdown

• $V_{\rm dc}$ = 400 V, $V_{\rm o}$ = 12 V

AC/DC-Stage Analysis ► Active EMI Filter

32 —

Active EMI Filter

- **6** dB gain in attenuation compared to passive CM filter
- **CM chokes are 40% smaller**
- Overall filter-volume reduction of 16%

185mm

185mm

Conclusion

Summary & Outlook

34 —

Summary & Outlook

How to increase power density in server supplies?

Thank You!

Gustavo C. Knabben, et. al.

Power Electronic Systems Laboratory, ETH Zurich Zurich, Switzerland Knabben@lem.ee.ethz.ch

October 2nd, 2020

