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With increasing switching frequency and higher power density of converter systems, electromagnetic
interference (EMI) problems introduce additional design constraints that should be considered in the
earliest system design stages. To comply with EMC standards, the conducted and radiated emission
levels generated by power electronic systems have to be controlled, necessitating the use of EMI filter
circuits. Thus, EMI filter components have to be examined in detail, including their high-frequency
behaviour in combination with PCB placement and parasitic couplings. An optimised arrangement of
filter components is required to fulfil EMI specifications with minimum constructional effort. In order to
speed up EMI filter design, nowadays mostly based on a trial-and-error process, virtual prototyping and
accurate electromagnetic simulators are required.

The Partial Element Equivalent Circuit (PEEC) method is a well-suited approach for the numerical
simulation of EM field problems in electrical circuits such as EMI filters, power converters, PCBs, etc. The
PEEC method has the ability to model typical power electronic structures with lower 3D-mesh
requirements than Finite Element Method (FEM)-based approaches, speeding up the modelling process
and insuring acceptable accuracy at the same time. The conventional PEEC approach has to be extended
for EM modelling in the presence of magnetic materials in order to establish a full 3D PEEC modelling
environment. Therefore, the coupled PEEC and Boundary Integral Method (BIM) approach was developed
to address the EM modelling problem of magnetic toroidal cores which are frequently used in EMI filters.
The developed PEEC-BIM coupled method was verified by inductor impedance and near EM-field
measurements. Good agreement between measurement and the PEEC-based simulation results is
achieved for a wide frequency range.

It is shown that the presented PEEC method can give a comprehensive understanding of EM behaviour of
EMI filter inductors and capacitors, taking their geometrical and material properties into account.
Furthermore, it enables the modelling of full EMI filter structures including both parasitic and effects
originating from the mutual coupling and the interconnection of filter elements. The simulation results
are verified by experimental measurements of different single-phase EMI filters (Fig. 1).

The final goal is to develop a fast 3D CAD PEEC-based virtual prototyping platform (Gecko-EMC) which
enables the prediction of the electromagnetic behaviour of power electronic converter systems with high
accuracy.
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Fig. 1. a) C-L-C filter structure. b) Gecko-EMC model of the C-L-C filter structure. ¢) Measurements vs. PEEC simulation of EMI filter
transfer function.
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Main Objectives

* Increasing Switching Frequency, Reduced Size of Power Converter
Systems — EMC requirements — EMI Filter design

= 3D EM Simulation of Passive EMI Filter Components (R, L, C) and of
their Mutual Coupling

EM simulation of EMI filter components (frequency domain)

EM simulation of interconnections, ground planes and shields

EM simulation of EMI filter circuits including parastics, mutual coupling
effects AND 3D geometrical arrangements of EMI filter components

= Partial Element Equivalent Circuit (PEEC)-based Virtual Prototyping
Platform: Gecko EMC Ggecko
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PEEC-Based Modeling Approach

* Coupling EM Problems and Electrical Circuits

Circuit Element: resistor R
PEEC cells: wire, PCB Track
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PEEC-Boundary Integral Method (BIM)

= Presence of Magnetic Material: Magnetization M
= Homogenization/Linearization of Magnetic Cores : M=(p,-1)H
= Magnetic Surface Modelling:  Boundary Integral Method (BIM)

Boundary condition for H, must be satisfied at magnetic surface S,
with normal vector n,,,: PEEC-BIM coupled method

Fictitious Magnetic Surface Current Approach: K
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PEEC-BIM Modeling of Magnetic Core

= Example: Toroidal Inductor
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PEEC-BIM Modeling of EML Fllter Inductors (1)

= Input parameters
Magnetic core properties:
- Nanocrystalline: VITROPERM 500F
- Nanophy (ArcelorMittal ) MO (D) ()
-Ferrite e \ =
- Iron-powder core material L
Permeability curves
- Datasheets
- Measurements
Winding properties
= Impedance:Z, =V,/I
= Stray (leakage) field
Post-processing: H-field

of N-Turns
Winding Magnetic Inductor

PEEC model « () ‘Vm éjgcm
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PEEC-BIM Modeling of EMI Filter Inductors (2)
= Common Mode (CM) / Differential Mode (DM) Inductors

1-PHASE COMMON MODE INDUCTOR
Leakage - Z,,,, & Common Mode - Z,,, Impedance
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PEEC-BIM vs. FEM (Maxwell 3D)

= Example: Wire = Example: Single-Phase EMI

Filter Inductor

= Gecko EMC: approx. 4 min
PEEC (Gecko EMC) FEM (Maxwell 3D) = Maxwell3D: approx. 20 min

PEEC (Gecko EMC)  FEM (Maxwell 3D)
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PEEC Modeling of EMI Filter Capacitors

= X/Y Foil Capacitors — 3D Model
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PEEC Modeling of EMI Filter Capacitors

= X/Y Foil Capacitors — Impedance

ESL, ESR determine
geometrical/conductivity
properties of PEEC cell and
length of connectors
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PEEC Modeling of EMI Filter Capacitors

= Mutual Coupling: Lo
Loop 1 : PCB Tracks = ESL, =
Loop 1, 2 : PCB Tracks — ESL., — ESL, .
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PEEC-based Modeling of EMI Filter

= Single-Phase Single-Stage C-L-C Filter Structure:

= Inductors/Capacitors/PCB Tracks Modelling
= EMI Filter Components Arrangements on PCB
= Multilevel Prediction (taking into account different effects)

/[_A Arrangement 1 A/F‘ Arrangement 2
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PEEC-based Modeling of EMI Filter

= PEEC vs. Measurements: C-L-C Filter

Vout / Vin [dB]
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Virtual Prototyping — Gecko EMC Software Tool (1)

* Inductor Model
= Core properties (design parameters input) |
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Virtual Prototyping — Gecko EMC Software Tool (2)

* Inductor Model
= Coil properties (Import — Rectangular Coil Design)
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Virtual Prototyping — Gecko EMC Software Tool (3)

16/21 —

= (Capacitor Model
= Capacitor properties (Import — Capacitor Design)
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Virtual Prototyping — Gecko EMC Software Tool (4)

= PCB Tracks Model
= PCB Track properties (Import — PCB Track Design)

PCB Track Design Parameters:
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Virtual Prototyping - Gecko EMC Software Tool (5)

= EMI Filter Model
" Frequency domain: (f,.., f..). N points m
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Summary

= PEEC-Based Approach Enables Modelling of High

Frequency Behaviour of EMI Filter Components
EM mutual coupling and parasitic effects, PCB placement
Magnetic core modelling via PEEC-BIM coupled method

= 3D PEEC-Based CAD Tool (Gecko EMC)

Virtual EMI Filter Design — Finding optimal PCB
arrangement of filter components and PCB layout

= Further Applications | i

Bus-bars, transformer leakage inductance etc.

Prediction of EM properties of power electronics converter
systems with sufficient accuracy

Eidgendssische Technische Hochschule Ziirich £ EFE -
Swiss Federal Institute of Technology Zurich




-1C I Power Electronic Systems 20/21 —

| = Laboratory

Thank You !
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