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CHEN ET AL.: MAGNET CHALLENGE FOR DATA-DRIVEN POWER MAGNETICS MODELING

ABSTRACT This article summarizes the main results and contributions of the MagNet Challenge 2023, an
open-source research initiative for data-driven modeling of power magnetic materials. The MagNet Chal-
lenge has (1) advanced the state-of-the-art in power magnetics modeling; (2) set up examples for fostering
an open-source and transparent research community; (3) developed useful guidelines and practical rules
for conducting data-driven research in power electronics; and (4) provided a fair performance benchmark
leading to insights on the most promising future research directions. The competition yielded a collection
of publicly disclosed software algorithms and tools designed to capture the distinct loss characteristics of
power magnetic materials, which are mostly open-sourced. We have attempted to bridge power electronics
domain knowledge with state-of-the-art advancements in artificial intelligence, machine learning, pattern
recognition, and signal processing. The MagNet Challenge has greatly improved the accuracy and reduced
the size of data-driven power magnetic material models. The models and tools created for various materials
were meticulously documented and shared within the broader power electronics community.

INDEX TERMS Artificial intelligence, data-driven methods, machine learning, open-source, power magnet-
ics, power ferrites.

I. MAGNET CHALLENGE OVERVIEW
Magnetic components account for more than 30% of both
the cost and losses in nearly all power converters [1], [2].
The performance of these magnetic components represents a
significant bottleneck in advancing high-performance power
electronics. Magnetic components are becoming increasingly
sophisticated with different portions of the core excited by dif-
ferent waveforms [3]. Considerations include the impact of dc
bias [4], geometry [5] and temperature [6]. Intricate winding
structures change terminal impedance and current distribu-
tion [7]. Usually, these effects can only be captured as look-up
tables or loss maps [8], [9], [10]. While circuit simulation
tools have expedited integrated circuit design, and numeri-
cal field simulation tools have deepened our understanding
of intricate component geometries, progress in modeling and
simulating power magnetic material characteristics has been
lagging.

Fundamentally, Maxwell’s equations can precisely describe
the linear behavior of conductors at high frequencies. Finite
element models have the potential to largely capture the ge-
ometry and thermal impact. The challenge lies in the highly
nonlinear nature of magnetic materials and the considerable
variation in magnetic component-level behaviors arising from
the material properties and manufacturing processes [11]. De-
spite advancements in elucidating core loss phenomena [12],
[13], [14], physical theories and lumped circuit models fall
short in predicting core losses or B-H loops with practical
accuracy for real-world materials. Existing magnetic material
modeling tools either oversimplify and lack accuracy, or rely
on experimental measurements after design and fabrication.
Power electronics design can be greatly advanced by a rapid
and precise method for modeling the complex behaviors of
magnetic materials, especially tools that can be integrated

with circuit simulations or finite-element analysis for captur-
ing non-linear effects.

A majority of commonly used methods of modeling core
losses in power magnetics are based on the empirical Stein-
metz equation (SE) [15]. Steinmetz parameters may vary
dramatically across the magnetics operating range. As power
loss increases, the temperature of magnetic materials also in-
creases, which is not well captured in the Steinmetz modeling
framework. Despite several modifications and upgrades to the
original SE (e.g., MSE [16], NSE [17], ISE [18], SSLE [19],
CWH [20], iGCC [21], iGSE [22], and i2 GSE [23]) – usually
by adding new parameters to the SE framework – these curve-
fitting methods have limited accuracy and cannot be smoothly
expanded to cover more influences. Upgrading the Steinmetz
modeling framework is a key step in advancing the design
flow for power magnetics.

Another important task for describing power magnetic ma-
terials is to model the B–H loops [24], [25], [26], [27]. As
a material signature, the B–H loop can be used to extract
the power loss, and can be used in analytical or numeri-
cal tools to analyze the behaviors of magnetic components,
such as inductance variation, saturation, and coupling. Ex-
isting hysteresis modeling frameworks (e.g., the Preisach
model [28] and the Jiles-Atherton model [29]) are gen-
erally developed based on semi-empirical equation-based
methods. There are opportunities to upgrade the B-H mod-
eling methods with modern neural network methods [30],
[31], and to unify the modeling of core losses and B-H
loops.

These contributions of MagNet Challenge include both ad-
vancing the technology and fostering a more collaborative
research community in power electronics by:

1) Advancing the state-of-the-art: Through collabora-
tive and competitive multi-objective optimization, the
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challenge has pushed the boundaries of what is possible
in power magnetics modeling.

2) Developing guidelines for data-driven research: The
challenge has established practical rules and useful
guidelines for conducting data-driven research in power
electronics.

3) Fostering an open-source research community: It has set
examples for creating a transparent, open-source inter-
national research community, promoting collaboration
on key topics.

4) Exploring future research directions: By providing a
fair performance benchmark, it offers new insights that
can guide future research in power magnetics modeling
towards the most promising approaches.

A. MAGNET CHALLENGE MOTIVATIONS
“It’s time to upgrade the Steinmetz equation!” – the Steinmetz
equation (SE) is an empirical equation used to calculate the
power loss (typically referred to as core loss) per unit volume
in magnetic materials when subjected to external sinusoidal
magnetic flux. The earliest version was proposed by Charles
Steinmetz in the 1890s [32], [33]. Typically, the SE is written
as:

Pv = k × f a
sw × Bb

ac, (1)

where Pv is the time average power loss per unit volume (e.g.,
in mW/cm3), fsw is the frequency (e.g., in kHz), and Bac is the
peak ac magnetic flux density (e.g., in mT); and k, a, and b,
known as the Steinmetz coefficients or Steinmetz parameters,
are generally found empirically from the material’s core loss
curves by curve fitting. One of the most popular upgrades to
the Steinmetz equation is the improved generalized Steinmetz
equation [22], often referred to as iGSE, which estimates
losses with any flux waveform using only the parameters
needed for the original equation. The iGSE can be expressed
as:

Pv = 1

T

∫ T

0
ki

∣∣∣∣dB

dt

∣∣∣∣
a

(�Bb−a)dt . (2)

Here, �B is the peak-to-peak flux density swing, and ki is
defined by

ki = k

(2π )a−1
∫ 2π

0 | cos θ |a2b−adθ
(3)

while a, b, and k are the same coefficients used in the origi-
nal Steinmetz equation. The iGSE is widely used in practice
because most other models require parameters that are not
usually given by manufacturers. The i2GSE method [23] im-
proves upon the iGSE by adding five more parameters to the
original three Steinmetz parameters to achieve higher accu-
racy. In practice, these parameters are not widely available
from manufacturers, leaving the designer to collect them.
Even so, describing the complex behaviors of typical power
magnetic materials with only eight parameters is often in-
sufficient to offer the desired accuracy for precise magnetics
modeling. The different methods of finding the Steinmetz

FIGURE 1. The vision and mission of the MagNet Challenge in 2023. The
open-source initiative aims at developing less complex, more versatile,
and more accurate data-driven power magnetics models.

parameters add uncertainty to the modeling accuracy. They
also do not capture the impact of flux dc bias and temperature.

The MagNet Challenge, modeled after the ImageNet Chal-
lenge organized by the computer vision community [34],
aimed to create an open-source community in power elec-
tronics and upgrade the existing Steinmetz equation-based
core loss modeling framework with the support of a massive
amount of high-quality measurement data covering differ-
ent materials across a wide range of frequencies, waveform
shapes, and temperatures. As illustrated in Fig. 1, a model-
ing framework that can better leverage modern data-driven
methods to improve the model accuracy, model versatility,
and to reduce the model size was the goal of MagNet Chal-
lenge. We seek data-efficient, computing-efficient, memory-
efficient, and scalable algorithms to develop new tools and
advance the understanding of magnetic core characteristics,
including core losses and B-H loops. The key questions we
tried to answer when designing the challenge rules included
the following:
� Shall we use one uniform modeling framework (e.g.,

the SE framework), or many different modeling
frameworks to cover a wide range of materials for dif-
ferent purposes?

� What accuracy is sufficient for power magnetics mod-
eling, considering sample-to-sample variation, geometry
uncertainty, temperature variation, dc bias, and other
manufacturing and operating conditions? How much er-
ror comes from materials and how much error comes
from measurements?

� What is the minimum number of parameters a model
needs to include to describe a particular power magnetic
material with satisfactory accuracy across a wide opera-
tion range?

� What is the best framework for modeling power magnet-
ics considering different design goals (e.g., for core loss
modeling, B–H loop modeling, hand calculation, SPICE
simulation, or finite element analysis)?

VOLUME 6, 2025 885
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� How can we visualize the data and develop explainable
data-driven models to advance the physical under-
standing of power magnetic materials?

� How much data do we need to train a good magnetic
material model across a wide operation range? How to
sample the operation space and reduce the dimension?

These are just a few example questions that one may ask
when developing a new framework for modeling power mag-
netic material characteristics. To answer these questions, we
designed the following three competition tracks:
� Model Performance Track: Develop a systematic ap-

proach to learn from a large amount of existing data for
pre-existing materials, and apply this approach to model
similar and different new materials with new data, and
make accurate predictions.

� Concept Novelty Track: Develop new concepts for power
magnetic core loss and B-H loop modeling, including
but not limited to fundamental physical mechanisms and
hypotheses, as well as data and signal processing meth-
ods, tools, and algorithms.

� Software Engineering Track: Develop software tools
and systems with high readability, reusability, versatility
for open-source development, and enhanced human-
computer interface (HCI) for rapid design iterations.

The focus of the MagNet Challenge in 2023 was to model
core loss in periodic steady state. B–H loops were provided
as training data. Other related topics, such as modeling tran-
sient dynamics of magnetic components, and predicting B–H
loops, were beyond the scope of the MagNet Challenge in
2023 but may be included in future competitions.

The MagNet Challenge reviews and compares existing and
new methods through an open-source competition. The goal is
both to advance technology and to foster a more collaborative
research community. Instead of looking back into existing lit-
erature, a forward-looking platform was created to thoroughly
compare the strengths and weaknesses of existing and newly
developed technical methods under uniform rules.

By participating in the MagNet Challenge, all teams enter
the above three tracks and competed on model performance,
size, and software engineering. Fig. 2 shows the timeline
of the MagNet Challenge in 2023. MagNet Challenge at-
tracted more than 220 international researchers to advance this
important topic together as competition participants, judges,
organizers, and volunteers. By submitting the developed code,
reports, and models to the MagNet Challenge, the intellectual
property was disclosed to the public.

Table 1 lists the key MagNet-related GitHub repositories.
The competition handbook, tutorials, supporting documents,
training and test datasets, final submitted reports, presentation
slides, meeting recordings, and the submitted models can be
found at the GitHub repository of the MagNet Challenge.
The MagNet AI & Data repository contains the raw data
and related data visualization tools maintained by Princeton
University. Other repositories include the 1) MagNet
Tookit developed by Paderborn University as a hub for
selected power loss models that were elaborated by different

FIGURE 2. The 1-year timeline of the MagNet Challenge in 2023, spanning
from February 2023 to February 2024.

TABLE 1. MagNet-Related GitHub Repository

competitors during the MagNet Challenge; and 2) MagNet
Engine developed by University of Sydney as a user-friendly
graphical user interface (GUI) for modeling magnetic core
losses in power electronics.

B. MAGNET CHALLENGE RULES AND DATA PREPARATION
The goal of the MagNet Challenge in 2023 is to develop
intelligent software tools that can learn and predict core loss
information with efficient data usage. For each magnetic
material of interest, student teams were asked to develop a
MATLAB or Python function that takes the following three
inputs for modeling power magnetic materials in steady state:
� A single-cycle arbitrary flux density waveform in 1024

steps: B(t ) (unit: T).
� An operation frequency: fsw (unit: Hz).
� A temperature: T (unit: degrees C).
and produce the following output:
� An average volumetric core loss estimation (floating

point): Pv (unit: W/m3).
Measurement data with dc bias was made available in the

MagNet database [4]. However, due to the lack of sufficient
high quality data and a clear understanding of the measure-
ment accuracy, dc bias [4], [35] and geometry impact [5] were
not included in the MagNet Challenge in 2023. Student teams
were encouraged to consider dc bias information, which may
be included in future competitions.

Fig. 3 shows an example data point used in the MagNet
Challenge. Each raw data point is a measured B-H loop de-
scribing the characteristics of a power magnetic material used
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FIGURE 3. An example data sample offered in the MagNet Challenge. This
data point describes the B–H loop of N87 material operating at 25 ◦C,
200 kHz, and zero dc bias under a trapezoidal excitation. The volumetric
core loss is 113.64 kW/m3 under zero dc bias. Over 2,000,000 data points
like this are available in the MagNet database for 15 different materials.

in an experimental scenario. The capacitive effect of the core
materials, as well as the winding to core parasitic capacitance
are captured in the measurements. The training data includes
the B-H loop time sequences, frequency fsw, and temperature
T . The final outcome of the model is a callable function:

Pv = f (B(t ), fsw, T ). (4)

The data used for the MagNet Challenge comes from the
Princeton-Dartmouth MagNet Project [11], [30], [31]. The
challenge included two rounds of competitions: a pre-test
round which allowed the teams to get familiar with the data
and the competition rules, and a final-test round which de-
termined the teams’ final ranking. Each training data point is
offered as a pair of single-cycle B(t ) and H (t ) time sequences,
with 1024 steps at different frequencies fsw and temperatures
T . The area of the B–H loop determines the volumetric core
loss Pv. Note that different numerical integration algorithms
for calculating the B–H loop areas may result in very different
core loss estimation results, especially if the B–H curve is
not smooth (e.g., due to non-sinusoidal excitation or nonlinear
material behavior). The testing data points include B(t ), fsw,
and T , but do not include H (t ) or Pv. The datasets used for the
pre-test phase and the final-test phase were:
� Round #1 Training: A large amount of training data for

10 materials dedicated for training: {3C90, 3C94, 3E6,
3F4, 77, 78, N27, N30, N49, N87}.

� Round #1 Testing: Separate, randomly sampled testing
data for the same 10 materials: {3C90, 3C94, 3E6, 3F4,
77, 78, N27, N30, N49, N87}.

� Round #2 Training: Strategically sampled training data
for 5 materials: {3C92, T37, 3C95, 79, ML95S}.

� Round #2 Testing: The remaining data for the same 5
materials used in Round #2 training: {3C92, T37, 3C95,
79, ML95S}.

Tables 2–3 list the size of the dataset made available for
each material. As documented in [11], [30], the MagNet
dataset covers a fundamental frequency range from 50 kHz
to 500 kHz, and a flux density range from 10 mT to 300 mT,
with sinusoidal, triangular, and trapezoidal waveforms. The

TABLE 2. Sizes of the Training and Testing Datasets for the 10 Materials
Used in Competition Round #1

TABLE 3. Sizes of the Training and Testing Datasets for the 5 Materials
Used in Competition Round #2

waveforms were collected assuming the magnetic components
are utilized in a real power converter (i.e., a “T” type circuit
in [11]). The data acquisition process was fully automated to
enable systematic error analysis and ensure high measurement
repeatability. The frequency and flux density limits were care-
fully selected to ensure high-enough data quality. Although
the MagNet Challenge focuses on material-level characteristic
model of ferrite materials, similar methods and data can be
used to advance component-level models and to model non-
ferrite materials.

The accuracy of a data-driven model is always bounded
by the accuracy of the measurements. One can improve the
accuracy of a data-driven model by increasing the number
of parameters in the model, however, the chance of model
overfitting can significantly increase if the model accuracy is
higher than the measurement accuracy. A deep understanding
of the modeling error and measurement error enables a good
balance between model accuracy and model size. In the Mag-
Net Challenge, the maximum measurement error is generally
controlled below 20% across the full operation range [11],
with an average error below 10%. As a result, we encouraged
the participating teams to target an average model error of
around 10%, and try to minimize the number of model pa-
rameters.

The names of the materials used in the round #2 competi-
tion were kept confidential to ensure competition fairness. The
datasets for the 5 materials used in the round #2 competition
were strategically sampled to test the model performance in 5
different ways:
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FIGURE 4. Histogram of the prediction error of an example model,
together with labeled average, 95th percentile error, and maximum error.

� 3C92 (Material A) is a material that looks very similar to
the 10 materials available in the first round training set.
It was used to set up a “tiny data challenge”, in which
only a small dataset was offered for training, and a large
dataset was reserved for testing.

� T37 (Material B) is a broadband material, which looks
fairly different from the 10 materials available in the
previous training set. It was used to set up a “new ma-
terial challenge”, in which a large dataset was offered
for training, and a small dataset was reserved for testing.

� 3C95 (Material C) is a material used for testing temper-
ature dependence. It was used to set up a “temperature
challenge”, in which the testing dataset includes temper-
atures that were not covered in the training dataset.

� 79 (Material D) is a material used for testing waveform
dependence. It was used to set up a “waveform chal-
lenge”, in which the training set has only very limited
data points for trapezoidal-waveform excitation, while
the testing set has many data points for trapezoidal wave-
forms.

� ML95S (Material E) is a material used for testing fre-
quency and flux density dependence. It was used to set
up a “frequency and flux density challenge”, in which
the training set has very limited data points for a few
frequency and flux density operating points, while the
testing set has lots of data points not covered in the
training set.

MagNet Challenge focused on core loss prediction. The
absolute value of the relative error ε of the core loss prediction
is defined as:

ε =
∣∣Pv,meas − Pv,pred

∣∣
Pv,meas

× 100%. (5)

Here Pv,meas is the measured volumetric core loss, Pv,pred is the
predicted volumetric core loss. The histogram of ε for each
material is then plotted with the average, the 95th and 99th
percentile, and the maximum errors labeled as in Fig. 4. The
95% percentile error was used to rank the accuracy of dif-
ferent models. Based on our evaluation of sample-to-sample
variation of power magnetic components [11], we anticipate

FIGURE 5. Average 95th percentile error across the 5 materials, and
average model number of parameters (size) of the 24 final submissions,
together with the state-of-the-art (SOTA) Pareto fronts before and after the
MagNet Challenge, estimated using the results reported in [30] as a
benchmark. The minimum average 95th percentile error reaches 7%, and
the smallest model parameter size reaches 60. Both the model sizes and
average errors are greatly reduced as a result of the community effort in
the MagNet Challenge.

a 95th percentile error of less than 10% as being competitive
for magnetic core loss modeling1.

It is important to quantify the model size. We define the
model size as the total number of parameters that a model
needs to store to describe the characteristics of each material.
The complexity of algorithms, such as model structure, itera-
tion loops, layers of neuron networks, etc., are not considered
in counting the number of parameters. MagNet Challenge was
designed to encourage models with more computation and
less memory usage.

C. MAGNET CHALLENGE FINAL RESULTS
In April 2023, 39 teams from 17 countries registered for the
MagNet Challenge. 24 teams from 17 countries continued
through the end and submitted their final results. A complete
list of the participating teams in the two rounds of competition
is provided in the Appendix.

Developing a good data-driven power magnetics model is
a multi-objective optimization process. Pooling the individual
research outcomes together visualizes the Pareto front of the
state-of-the-art and provides a fair performance benchmark
and insightful outlook on future research directions. Fig. 5
shows the average 95th percentile error and model size of
the final submissions. The winning models use about 1,000
parameters to achieve less than 10% average 95th percentile

1The normalization in (5) might have lead towards a data bias overem-
phasizing samples with very low absolute losses since the estimation error
(numerator) typically does not scale linearly with the target value (denom-
inator). The extremes of operating points with very low losses (where loss
may be negligible) and very high losses (where operation is impractical) may
be of less interest in practical magnetic component design work for power
electronics, so alternative performance metrics might be considered in future
challenges.
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TABLE 4. MagNet Challenge Methodology Summary

FIGURE 6. Model accuracy and model size ranking of the 24 teams that
qualified for the final competition. Note that the differences in the model
accuracy are usually very small among the best performing teams, whereas
the differences in model size are often very large.

error. Fig. 6 lists the accuracy ranking and size ranking of the
24 teams.

Table 4 provides a brief summary of the models and meth-
ods developed by the participating teams. Table 5 lists the 95th
percentile error and size of the models developed by each team
for each of the 5 testing materials.

II. MAGNET CHALLENGE RESEARCH FINDINGS
The MagNet Challenge offered an opportunity for student
teams to explore a wide range of equation-based and data-
driven methods for power magnetic material modeling, and
the outcomes of the challenge quantitatively verified the fun-
damental tradeoff between model size and model accuracy.
Most teams centered their strategy around modern machine
learning methods. A few of them are focused on physics-based
or equation-based methods. Evaluating a wide variety of dif-
ferent methods with a strategically designed database leads
to a better understanding of the strengths and weaknesses of
different strategies.

Note that the descriptions of these models are developed
based on their performance and novelty ranking in the Mag-
Net Challenge. Although the rules of the MagNet Challenge
were carefully designed to reflect the opportunities and chal-
lenges in the real application scenario, a winning model in the
MagNet Challenge may or may not perform well in real-world
application scenarios. While we were able to rank different
methods by different evaluation rules as a part of this compe-
tition, these methods are pending further improvements, and
their rankings may be very different under different evaluation
rules. Nevertheless, the performance and rankings reported in
this paper can provide useful guidelines for further enhance-
ment of these methods and the development of new methods.

Here we provide a brief review of many of the individual
scientific papers recently published by the research teams
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TABLE 5. MagNet Challenge Final Results: 95th Percentile Error and Model Size of the 24 Teams Qualified for the Final Competition

participating in the challenge [36], [37], [38], [39], [40], [41],
[42], [43], [44].

A. GREY-BOX HYBRID APPROACH
One widely-adopted data-driven approach in the MagNet
Challenge is the grey-box neural network approach, for its
excellent capability of balancing model accuracy and model
size. The neural network architectures are designed with
guidelines from physical understanding and explainable logic.
Fig. 7 shows the HARDCORE architecture developed by
Paderborn University [36]. The architecture starts from fea-
ture engineering on the B(t ) waveform, followed by a B–H
loop estimation block implemented as a 1-D convolutional
neural network (CNN). The core loss predicted by the B–H
loop area calculation is then corrected by a data-driven model
which produces the final prediction. This model is highly
compact (with 1755 parameters) but also delivers very high
prediction accuracy across all five testing materials.

The Magnetization Mechanism-Inspired Neural Network
(MMINN) architecture developed by University of Sydney
also achieved good balance between model size and model
accuracy. MMINN is designed to capture the fundamental
magnetization processes of magnetic materials at the micro-
scopic level. As illustrated in Fig. 8, MMINN comprises two

FIGURE 7. Overview of the HARDCORE architecture developed by
Paderborn University, which leads to excellent model accuracy and
compact model size.
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FIGURE 8. The MMINN architecture developed by University of Sydney.

subnetworks for capturing hysteresis (i.e., the magnetization
of magnetic domains) and dynamic (i.e., the eddy current
of the core material owing to the electromagnetic induction)
behaviors, and has the potential to be extended to capturing
more complex dynamic core loss profiles when more data
is available. The compact MMINN model only needs 1000
parameters and performed well on the accuracy test.

The model proposed by the team from Politecnico di
Torino tried to apply different modeling methods to dif-
ferent excitation waveforms to minimize the model size.
SVM regression was used to model losses with sinusoidal
excitations and neural networks were used to model losses
with triangular excitations. The composite waveform hy-
pothesis was then used to convert the results predicted by
the neural network trained with triangle data for trapezoidal
excitations.

The model presented by the team from the Indian Institute
of Science followed a similar strategy of developing a neural
network model tailored to each type of excitation. The loss
function for training the neural networks comprised a data
loss term, i.e., MSE (output of neural network – measured
core loss), and an empirical loss term, i.e., MSE (output of
neural network – empirical equation for core loss), where
MSE (·) is the mean-squared error. The team used the clas-
sical Steinmetz equation for sinusoidal excitations and the
composite waveform hypothesis-based improved Steinmetz
equations (ISE) [18] to compute the empirical loss term for
triangular and trapezoidal excitations as seen in Fig. 10. In
addition, the team incorporated the concept of learnable pa-
rameters to extract the unknown Steinmetz parameters. The
model achieved very high accuracy on four materials (except
79) with a relatively large number of parameters.

The team from University of Colorado Boulder selected
random forest regression as the core of their strategy [37].
Random forest algorithms prioritize rapid training and
computation over parameter size as compared to other
previously mentioned neural network methods. By leveraging
the equation-based model as a starting point and attempting
to only predict and correct the error, this method offers high
data usage efficiency and low computation cost compared to
other models.

The Southeast University SEU-WX team presented an
interesting Physics-Inspired Multimodal Feature Fusion Cas-
caded Network (PI-MFF-CN), which was developed based on
micromagnetism and the associated Landau-Lifshitz-Gilbert
(LLG) equation, and is trained by embedding physical mech-
anisms in the gradient learning process of the network. As
shown in Fig. 9, a multimodal feature fusion method then
combines the advantages of CNNs and fully connected neural
networks (FCNNs) to learn mixed-sequence scale data. Al-
though it did not rank high in the competition performance
metrics, this method represents a deep exploration of hybrid
data-driven and physics-based models.

Silicon Austria Labs’s model is on the boundary between
gray-box model and black-box model. They trained a graph
neural network (GNN) and utilized symbolic regression (SR)
to develop a new formula for the magnetic core loss. However,
the outcomes obtained from this approach were found to be
unsatisfactory, primarily due to the structure of the problem.
Ultimately, a NN combined with an FFT and some prepro-
cessing techniques were utilized. FFT in combination with
NN was also explored by the team from Tribhuvan Univer-
sity in [38]. The teams from Nanjing University of Posts and
Telecom also explored equation based methods with novel in-
sights and promising outcomes. Zhejiang University-UIUC
explored a method which uses neural networks structured
around the iGSE as a base model to accelerate the learning
process and reduce the data requirement.

B. BLACK-BOX DATA-DRIVEN APPROACH
The model developed by Fuzhou University fully exploited
the potential of a sequence-to-scalar transformer architecture,
together with a deep understanding of the data and the princi-
ples of core loss modeling. As can be seen in Fig. 11, they
introduced a multi-stage fine-tuning strategy to explore the
process of knowledge transfer, thereby discovering a poten-
tial solution for a fundamental cross-material model, i.e., the
“MagNet-GPT”, as further extended solutions for the princi-
ples presented in [31], [39], [40].

The University of Bristol team adopted a long-short-term-
memory (LSTM) architecture to process the time sequences,
followed by a Feedforward Neural Network (FNN) for merg-
ing frequency and temperature information. The outstanding
model performance comes from the deep understanding and
engineering practice on transfer learning. As illustrated in
Fig. 12, the transfer learning process enables the model to
achieve high performance even with very limited available
data for a new power magnetic material. This model needed
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FIGURE 9. The two-stage PI-MFF-CN architecture developed by Southeast University SEU-WX.

FIGURE 10. Empirical model informed neural network development using
learnable parameters introduced by IISc team.

a lot of parameters, but achieved high performance across all
five materials.

The Delft University of Technology team proposed an ex-
cellent strategy for multi-material transfer learning and model

FIGURE 11. The multi-stage fine-tuning strategy introduced by Fuzhou
University.

multi-objective optimization (MOO) [41]. As illustrated in
Fig. 13, the MOO approach allows the model to precisely
select the right parameter size to balance model size and
accuracy. The optimization shows that a total number of 1,000
parameters is a good balance point between model size and ac-
curacy, which was validated by the comparison to the winning
models in the MagNet Challenge.

The University of Tennessee Knoxville team introduced
state-of-the-art machine learning concepts, attention-based U-
Net architecture, together with generative-advisory-network
(GAN) based data augmentation, to the MagNet Challenge.
U-Net, as shown in Fig. 14, is a neural network architecture
widely used for image segmentation. The team specifically
designed a U-Net architecture to adapt to the intricate and
varying nature of magnetic materials and operational environ-
ments. The large U-Net model excelled for 3C92, T37, and
3C95, but didn’t perform well for 79 and ML95S.

The teams from Arizona State University, Xi’an Jiaotong
University, Tsinghua University, National Taipei Univer-
sity of Technology, Nanyang Technological University, and
Hangzhou Dianzi University also presented a variety of
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FIGURE 12. Transfer learning strategy from University of Bristol.

neural network architectures (combinations of ViT, CNN,
FCNN, LSTM, and Transformer) together with systematic
training and fine-tuning strategies for cross-modeling of many
materials. These methods tried to leverage more advanced sig-
nal processing techniques (e.g., patch embedding, class token,
quantization) to reduce the load of the neural networks and
use fewer parameters. Some of these models have very good
performance and the model sizes are relatively small.

The KU-Leuven team introduced a novel Conditional Gen-
erative Adversarial Network (cGANET) model [42] which
explores the possibility of training an adversarial neural net-
work to improve the trustworthiness of a traditional neural
network approach, as illustrated in Fig. 15. It has the potential
to ensure bounded safety for data-driven methods to predict
trustworthy results.

C. WHITE-BOX EQUATION-BASED APPROACH
The most successful equation-based attempt in the MagNet
Challenge is the ci2GSE method developed by the team

FIGURE 13. The multi-material transfer learning and multi-objective
optimization method proposed by TU Delft [41].

FIGURE 14. The U-Net architecture developed by University of Tennessee
Knoxville, representing an out-of-the-box attempt by using state-of-the-art
neural network architecture.

FIGURE 15. The cGANET architecture developed by KU Leuven [42].

from Mondragon University, a continuation of the compos-
ite improved Generalized Steinmetz Equation (ciGSE) [43].
The method is a combination of the original true Steinmetz
Equation (tSE), the improved Generalized Steinmetz Equation
(iGSE), the composite waveform hypothesis (CWH), and the
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FIGURE 16. The correlation between the prediction variation and the average prediction error of the MagNet Challenge final evaluation for each data
point of the 5 materials {A, B, C, D, E}, plotted in log scale (each dot represents an operating point under test). The 5 materials are {3C92, T37, 3C95, 79,
ML95S}, respectively. A higher prediction variation among different modeling strategies usually lead to a higher average prediction error. Material D is
verified as the most challenging material to model in the MagNet Challenge. It has the highest prediction variation (i.e., more than 10% variation among
different models) and the highest average prediction error (approaching 100% in the worst case).

improved improved Generalized Steinmetz Equation (i2GSE).
For each temperature point, the ci2GSE uses 9 parameters to
describe the core loss a three step trapezoidal excitation as:

Pv = �[D(ek′
1+a1 ln | dB

dt |+b1 ln �B + ek′
2+a2 ln | dB

dt |+b2 ln �B)]

+ f × ek′
rel+arel ln |trel|+brel ln �B, (6)

where k′
1, k′

2, k′
rel, a1, a2, arel, and b1, b2, brel are the Steinmetz

parameters used to describe the core losses in the three sub-
sections of the piece-wise linear waveforms (e.g., triangle and
trapezoidal excitations). The core losses during the relaxation
time are captured. In addition, six additional parameters p00,
p10, p01, p20, p11 and p02, are used to fit the sinusoidal core
loss data into the three dimension f , �B, and Pv plane. The
curve-fitting was performed for each temperature. The total
number of parameters needed to describe the material char-
acteristics at four temperature points are (9 + 6) × 4 = 60.
The curve-fitting algorithm was implemented in Excel and
was fully automated. The average 95th percentile error of
this method is about 15%, which is impressive given that the
model has only 60 parameters. Limitations of the curve-fitting
approach can be seen in the results for material 79 “waveform
challenge”, with a noticeably high 95th percentile error of
93% due to missing relaxation data in the training dataset.
This error could be decreased by pre-definition of the Stein-
metz parameters if additional training data were available.

Another impressive equation-based approach was devel-
oped by the Southeast University SEU-MC team employing
the vector magnetic circuit theory to predict core loss. The
theory is developed based on lumped circuit analysis and
is very similar to the Laithwaite magnetic equivalent circuit
model [44]. The model on average used 60 parameters to
describe each material, and reach a similar accuracy as that
of the Mondragon model. However, the model tuning process
is not fully automated.

III. STATISTICS OF THE MODELING RESULTS
The data and models generated by the MagNet Challenge
can be used to verify a wide range of hypotheses in power
magnetic modeling. An example hypothesis that we can verify
(suggested by Arizona State University after the Challenge
completed) is:
� “For the same modeling strategy, a material with

more complex material characteristics, smaller data
size, or lower data quality, may naturally lead to
lower modeling accuracy and higher prediction vari-
ation among different models.”

To verify this hypothesis, we statistically evaluate the pre-
diction results of different core loss models developed by
different teams for a wide range of operating conditions.
Fig. 16 shows the correlation between the prediction variation
and average prediction error for Materials {A, B, C, D, E},
respectively. The prediction variation is the standard devia-
tion of the core losses predicted by the models developed by
the different teams, normalized to the average predicted core
loss and expressed in percent. A higher prediction variation
indicates that the results predicted by different teams are very
different from each other, indicating complex material charac-
teristics. The average prediction error is the geometric mean
of the prediction errors of the different models compared
to the ground-truth measurement results. A higher predic-
tion variation indicates that the material is more difficult to
model, yielding higher average prediction error. In this test,
material D is the most challenging to model with the highest
prediction variation and the highest average prediction error.
This hypothesis is consistent with the results of the MagNet
Challenge.

IV. MAGNET CHALLENGE ROADMAP
The ultimate goal of the MagNet Challenge is to explore
and compare a wide range of modeling strategies for power
magnetic components, and to optimize and automate power
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FIGURE 17. Roadmap of the MagNet challenge with addressed topics
marked in red boxes, and example future topics marked in white boxes.

magnetic design. To this end, we believe that a future MagNet
model should have the following characteristics:
� Accuracy: to reach a high level of model accuracy (as

accurate as the data accuracy and sample-to-sample vari-
ation) and repeatability for magnetics modeling in the
design, development, and manufacturing process, and to
precisely reflect the multi-scale and multi-physics nature
of power magnetic material modeling.

� Compactness: to achieve efficient model training, rapid
simulation, and effective optimization. This is particu-
larly important given the lack of sufficient high-quality
publicly available training data and the potentially huge
design space (materials, geometries) and model operat-
ing space (excitation waveforms, temperatures, frequen-
cies, peak flux densities, etc.) of magnetic components.
A simpler model generally means a smaller number of
model parameters and a more efficient usage of measure-
ment data.

� Generality, consistency, and versatility: a good power
magnetic component model should be applicable to a
wide range of application scenarios with minimum limi-
tations, and be consistent with other existing component
models (e.g., semiconductor models and capacitor mod-
els) for high fidelity design and simulation, and be
versatile so that it can be adjusted for different design
purposes (e.g., trading model simplicity for accuracy).

Based on the outcomes of the MagNet Challenge, equation-
based methods and data-driven methods both have their
strengths and weaknesses, and they both have significant room
to improve. They can also be expanded or merged to cover
more sophisticated application scenarios and modeling needs.
Fig. 17 shows the strategic roadmap of the MagNet Challenge
in the near future, including the topics that have been covered
in 2023. This roadmap is in line with the above-mentioned
characteristics of the envisioned MagNet model, with a par-
ticular focus on the generality of the model. For example, the
MagNet Challenge in 2023 prioritized model accuracy and
simplicity for periodic steady state, major-loop, and zero dc
bias types of excitation waveforms. The excitation frequency

is limited to the tens to hundreds kilohertz range at sparse
temperature points (four points only). In the future, more
complicated excitation profiles (e.g., transient excitations with
minor-loop and non-zero dc bias), wider operation range (e.g.,
frequency range up to a few megahertz), mixed-frequency
operation (e.g., magnetic components in switched-mode ac-dc
converters) and geometry impacts will need to be explored.

The winning models in the MagNet Challenge perform well
under the designated training and testing scenarios, but do not
necessarily perform well in other scenarios and may not be the
most appealing modeling strategies. Better models and better
interpretations are still to be found. The potential technolo-
gies that will be explored in future Magnet Challenges may
include:
� Data Engineering: In MagNet Challenge 2023, the

data acquisition was performed by the Challenge or-
ganizer and managed and distributed in a centralized
way. Data acquisition should be standardized and be rig-
orously cross-validated and certified across institutions
and material manufacturers. For data-driven methods,
the quality of a model is fundamentally limited by the
quality of data. In future challenges, an open-source,
transparent, community-driven data management strat-
egy, together with strong industry support, may ensure
sustainable development by the community.

� Model Framework: In MagNet Challenge 2023, Black-
Box Data-Driven methods, White-Box Equation-based
methods, and Grey-Box Hybrid methods were explored.
A majority of student teams performed time domain
analysis. Frequency domain methods were used less
and may be worth further exploration. The machine
learning frameworks are rapidly evolving and it is still
early to identify the best strategy for modeling power
magnetic materials. Modeling frameworks that can be
naturally expanded and updated to cover many dif-
ferent materials under a unified framework are worth
exploration. Modeling frameworks that can naturally
interface with large-language models could also be
interesting.

� Data Visualization: Power magnetic material modeling
is naturally complex and has high dimensionality. Sys-
tematically compressing, filtering, and visualizing the
high-dimension data for human interpretation is critical
for advancing the human-data interface and enabling
new data-driven applications.

� Physical Insights and Better Materials: Although Mag-
Net Challenge 2023 didn’t intend to close the loop
for advancing physical understanding of power mag-
netic materials, many teams attempted to do so (e.g.,
UTK, SEU-MC). With a larger data set, better data
quality, more powerful data-driven models, and better
human-data interface, we hope the MagNet Challenge
can ultimately lead to enhanced physical understanding
of power magnetic materials, and better magnetic mate-
rial and component design.
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V. CONCLUSION
This paper summarizes the key progress and major outcomes
of the MagNet Challenge in 2023, an International Challenge
on Design Methods in Power Electronics supported by the
IEEE Power Electronics Society, Google, and Enphase En-
ergy. The critical outcomes and performance ranking of the
challenge entries are summarized and highlighted. It repre-
sents a pioneering collaborative research initiative in power
electronics for tackling large-scale sophisticated research top-
ics which can only be addressed by open-source community
efforts.

APPENDIX : MAGNET CHALLENGE 2023 PARTICIPATING
TEAMS
The 39 undergraduate and graduate teams that registered for
the MagNet Challenge in 2023 were:

1) Aalborg University, Denmark
2) Arizona State University, USA
3) Cornell University Team 1, USA
4) Cornell University Team 2, USA
5) Federal University of Santa Catarina, Brazil
6) Fuzhou University, China
7) Hangzhou Dianzi University, China
8) Indian Institute of Science, India
9) Jinan University, China

10) Katholieke Universiteit Leuven, Belgium
11) Mondragon University, Spain
12) Nanjing University of Posts and Telecom., China
13) Nanyang Technological University, Singapore
14) Nation Taipei University of Technology, Taiwan
15) Northeastern University, USA
16) Paderborn University, Germany
17) Politecnico di Torino, Italy
18) Purdue University, USA
19) Seoul National University, Korea
20) Silicon Austria Labs, Austria
21) Southeast University SEU-WX, China
22) Southeast University SEU-MC, China
23) Tribhuvan University, Pulchowk Campus, Nepal
24) Tsinghua University, China
25) Delft University of Technology, the Netherlands
26) University of Bristol, U.K.
27) University of Colorado Boulder, USA
28) University of Kassel, Germany
29) University of Manchester, U.K.
30) University of Nottingham, U.K.
31) University of Sydney, Australia
32) University of Tennessee, USA
33) University of Twente Team 1, the Netherlands
34) University of Twente Team 2, the Netherlands
35) University of Wisconsin-Madison, USA
36) Universidad Politécnica de Madrid, Spain
37) Xi’an Jiaotong University, China
38) Zhejiang University, China
39) Zhejiang University-UIUC, China

The 23 teams that qualified for the round #2 competition
and submitted the final results were:

1) Arizona State University (ASU), USA
2) Fuzhou University (Fuzhou), China
3) Hangzhou Dianzi University (HDU), China
4) Indian Institute of Science (IISc), India
5) Katholieke Univ. Leuven (KU Leuven), Belgium
6) Mondragon University (Mondragon), Spain
7) Nanjing Univ. of Posts and Telecom. (NJUPT), China
8) Nanyang Technological University (NTU), Singapore
9) National Taipei Univ. of Technology (NTUT), Taiwan

10) Paderborn University (Paderborn), Germany
11) Politecnico di Torino (PoliTO), Italy
12) Silicon Austria Labs (SAL), Austria
13) Southeast University (SEU-WX), China
14) Southeast University (SEU-MC), China
15) Tribhuvan University (Tribhuvan), Nepal
16) Tsinghua University (Tsinghua), China
17) Delft Univ. of Technology (TU-Delft), the Netherlands
18) University of Bristol (Bristol), U.K.
19) University of Colorado Boulder (CU-Boulder), USA
20) University of Sydney (Sydney), Australia
21) University of Tennessee Knoxville (UTK), USA
22) Xi’an Jiaotong University (XJTU), China
23) Zhejiang University-UIUC (ZJUI), China
The 7 final winners of the MagNet Challenge are:
� Model Performance 1st Place: Paderborn University
� Model Performance 2nd Place: Fuzhou University
� Model Performance 3rd Place: University of Bristol
� Excellent Innovation 1st Place: University of Sydney
� Excellent Innovation 2nd Place: Delft Univ. of Tech.
� Excellent Innovation 3rd Place: Mondragon University
� Software Engineering Award: University of Sydney
The 9 honorable mention teams are:
� Arizona State University
� Indian Institute of Science
� Xi’an Jiaotong University
� Zhejiang University-UIUC
� University of Tennessee
� Politecnico di Torino
� Southeast University SEU-WX
� Southeast University SEU-MC
� Tsinghua University
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