Optimal Design of Highly Efficient and Highly Compact PCB Winding Inductors

ETH zürich

Power Electronic Systems
Laboratory

Jannik Schäfer, Dominik Bortis and Johann W. Kolar

Power Electronic Systems Laboratory (PES), ETH Zürich, Switzerland {schaefer,bortis,kolar}@lem.ee.ethz.ch

I. CHALLENGES

- Minimize the AC resistance of the inductor winding for efficient high-frequency (HF) operation
- Avoid parasitic HF magnetic fields in the winding

A Parasitic magnetic skin field $H_{\rm skin}$, proximity field $H_{\rm prox}$ and fringing field $H_{\rm ag}$ around the air gap

II. METHODS

- Place air gap above the conductor
- Use fringing field H_{ag} to compensate the magnetic fields H_{skin} and H_{prox}
- Find optimal distance d_w between air gap and conductor

$$rac{R_{
m AC}}{R_{
m DC}} = F_{
m R} = f(d_{
m w}) \stackrel{
m minimize}{\longrightarrow} F_{
m R} = 1$$

$$P_{\text{cond}} = R_{\text{DC}} F_{\text{R}} I_{\text{rms}}^2 = \int_{V} \frac{J(x, y, z)^2}{\sigma} dV$$

 \blacktriangle a) Magnetic field components perpendicular to the conductor surface and b) current densities $J_{_{\rm y}}$ for different $d_{_{\rm w}}$

III. STRAIGHT CONDUCTOR

- ▲ Straight conductor with single air gap orthogonal to the conductor surface
- Design guideline for optimal air gap to conductor distance d_w based on simplified field calculations:

$$\frac{\partial}{\partial d_{\mathbf{w}}} F_{\mathbf{R}}(d_{\mathbf{w}}) \stackrel{!}{=} 0 \longrightarrow d_{\mathbf{w}, \text{opt}} = \frac{b_{\mathbf{w}}}{2} \qquad (1)$$

▼ $F_{\rm R}$ values for different normalized distances $d_{\rm w,norm} = \frac{d_{\rm w}}{b_{\rm w}}$ and different frequencies $f_{\rm sw}$

dominating skin effect

dominating proximity effect

IV. CIRCULAR CONDUCTOR

■ The DC current density $J_{\rm DC}$ in a circular conductor is not homogeneous as in a straight conductor \rightarrow Find optimal air gap position $(z_{\rm ag}, r_{\rm ag})$, where $J_{\rm AC}$ matches $J_{\rm DC}$

▲ Currend densities in a circular conductor with $r_{\rm in} = 5$ mm and $r_{\rm out} = 20$ mm for a) without an air gap, b) an air gap placed in the optimal position and c) an air gap positioned as in a straight conductor

ightharpoonup Optimal air gap positions for a circular PCB winding and different ratios of radii $r_{\rm in}/r_{\rm out}$

V. EXPERIMENTAL RESULTS

Practical implementation of the design concept

Specifications: $N_{\text{layer}} = 6$, $I_{\text{sat}} = 30\text{A}$, $L_{\text{nom}} = 5\mu\text{H}$

▲ PCB winding only (L = 500nH)

▶ PCB inductor using new design approach (L = 5uH)

▲ Conventional PCB inductor (*L* = 5uH)

Practical implementation of the proposed inductor design concept

▲ Measured AC resistance values using an impedance analyzer

▲ Calorimetric measurements of the total inductor losses

▲ Thermally enhanced PCB inductor design