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For various electrical interconnect and EMC problems, the Partial Element Equivalent Circuit (PEEC) method has proven to
be a valid and fast solution method of the electrical field integral equation in the time as well as the frequency domain. Therefore,
PEEC has become a multi-purpose full-wave method, especially suited for the solution of combined circuit and EM problems, as
found, for instance, on printed circuit board layouts, power electronics devices or EMC filters. Recent research introduced various
extensions to the basic PEEC approach, for example a nonorthogonal cell geometry formulation. This work presents a fast, flexible
and accurate computational method for determining the matrix entries of partial inductances and the coefficients of potential for
general non-orthogonal PEEC cell geometries. The presented computation method utilizes analytical filament formulas to reduce
the integration order and therefore to reduce computation time. The validity, accuracy and speed of the proposed method is
compared with a standard integration routine on example cell geometries where the numeric results of the new method show
improved accuracy, coming along with reduced computation time.

Index terms—Filament mutual inductance, integration, non-orthogonal PEEC, partial element computation.

I. INTRODUCTION nonorthogonal cell geometries, since fast analytical formulas

HE increasing performance of electronic circuits occu@€ not directly applicable. Hence, a cumbersome multidi-
T by increasing the complexity and the operating frequeﬁ]ensional integration must be performed numerically for
cies. This fact is true for on-chip VLSI design, as well a§Very entry in theL, and P, matrices. Furthermore, the
for macroscopic circuits as in power electronics. Due to tiPtained accuracy of partial elements has direct influence on
resulting fast voltage and current transients, the modeling € stability of time-domain models [5] and a fast computation
electric interconnects and the analysis of their electromagnetith high precision is desirable.
behaviour is gaining in importance. This work is introducing a new integration method using

For the solution of mixed EM problems, the Partial Elemer@nalytic solutions for the Neumann integral along straight
Equivalent Circuit (PEEC) method [1] has become a vednd arbitrarily aligned current filaments [6] to accelerate the
popu|ar approach_ The method is based on a circuit interpﬁ;ﬂlCU'&tion of nonorthogonal partial elements. This technique
tation of the Electric Field Integral Equation (EFIE). Unlikecan be applied to the mutual couplings between the PEEC cells
the method of moments, PEEC is a full-spectrum meth@$ Well as the self-terms represented by the diagonal elements
valid from DC to a maximum frequency determined by thef the L, and P, matrices.
meshing. Further extensions, especially the introduction of
time retardation [2], dielectric cells [3] and the formulation I
with nonorthogonal cell geometries [4] have made PEEC a
multi-purpose electromagnetic solver. The classical PEEC method is derived from the equation

A PEEC simulation is mainly performed in the followingfor the total electric field at a point written as
steps:

. NON-ORTHOGONAL PEECFORMULATION

» Geometry discretization of the layout and placement of Ei(r,t) = J(r,t) + OA(r,1) + Vo(r,t) (1)
external components such as current and voltages sources g ot
or load impedances, where E; is an incident electric fieldJ is a current density,
« fill-in of partial inductance matrices,, and partial coef- A is the magnetic vector potential, asds the scalar electric
ficients of potential matrice®’,, potential. By using the definitions of the scalar and vector
« setup of the matrix equation system, typically in modifiegotentials, the current- and charge densities are discretized by
nodal analysis (MNA) formulation, defining pulse basis functions for the conductors and dielectric
« time domain or frequency domain solution of the systemmaterials. Pulse functions are also used for the weighting
matrix equation in a SPICE-like solver. functions resulting in a Galerkin type solution. By defining

The bottlenecks of simulation effort are both, matrix filla suitable inner product, a weighted volume integral over the
in and the subsequent solution of the equation systenss]ls, the field equation (1) can be interpreted as Kirchhoff’s
which limit the maximum problem size t©0%-10°> unknown voltage law over a PEEC cell consisting of partial self in-
variables, namely the node voltages and currents. The partattances between the nodes and partial mutual inductances
element computation is the limiting factor in particular forepresenting the magnetic field coupling in the equivalent
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circuit. The partial inductances, shown Ag;; in Fig. 1, are current filaments
defi ina, a direction
efined as VAR
no 1 1
Lpij = & dv;du; . 2
pJ 4 a;Q; // "I‘i — ’I’j| v UJ ( )
ViV

Fig. 1 also shows the node capacitances which are related
the diagonal coefficients of potentigl; while ratios consisting
of p;;/pi; are leading to the current sources in the PEEC
circuit. The coefficients of potentials are computed as

1 1 1
4meg SZ-SJ- \'r‘i - 'r'j\ Fig. 2. Two inductive hexahedral PEEC volume cells with current direction
S S, anda’. The coordinate axes indicate a local non-orthogonal coordinate system,

. . as introduced in [4]. Furthermore, two current filaments, pointing respectively
Introducing a local non-orthogonal coordinate systein 4 anda’ direction, are displayed.

(a,b,c,a’,b', '), the general self and mutual partial induc-
tances can be extended to a non-orthogonal formulation as
detailed in [4]. Then, the inductances are computed as  that theLp- and Pn-matrices are dense and full, respectively.
orllor In particular, the self terms on the matrix diagonals require
Lpew = /////d’ -a 3|30 G(r,r') dvdv’ (4) special attention due to the singularity in Green’s function (6).
b whe Insertion of a four-fold §-pulse function into the non-
orthogonal Lp definition (4) gives a relation between the
mutual inductance of infinitesimal thin current filaments and

Py, =+ //// Glr,') dAdA’. (5) the non-orthogonal volume mutual inductance
€

aba'ty Lpea = u//////é(b— bo, b’ — by, ¢ — co, ¢ — cp)
The double volume and double surface integrations in (4) and SO OA
(5) are performed in cell coordinates of the corresponding

and likewise, the coefficients of potential are given by

or||or
hexahedral or quadrilateral PEEC cells and the free space ...a - a a—r a—r, G(r,v") dvdy’ (7)
Green’s function is used alioa
Oy < ST 3 ©) — Lp; 1 (bo, By, cos ch)
) T amr = T A e — | = 2P11190, %0, €0, Co)-

g@_e geometric proportions are exemplified in Fig.2. Taking
into account the integration property of Diradspulse func-
tion* reduces the double volume integration (4) into a double
IIl. N ON-ORTHOGONAL PARTIAL ELEMENT surface integral. Therefore, one obtains a simplified expression

CALCULAT'C_)N USING _ANALYT'C FILAMENT '_:ORMULAS for the partial mutual inductance between two non-orthogonal
The numeric evaluation of (4) and (5) requires a huge cofjglume cells

putational effort due to the dimensional manifold and the fact
Lpga = //// Lpss(b, b, c,c')dada’dbdb’. (8)

where, throughout this paper, the time retardation is neglect

(a) bbcc

v op, Hence, Lp in equation (4) can be expressed using only the
_ = Zl Pan Y integral of the analytic solutiofip ¢ () for mutual inductances

. 3 o between arbitrary aligned current filaments, which are well-
M known [7], see appendix. The filament formula is a complex
N U= ;Jw'-prmhb expression including several hyperbolic and trigonometric
) bm functions. Nevertheless, a numeric evaluation of (8) speeds
Lp,, U, Lp,, U, up the integration. Besides the integration order reduction, the

speedup is caused by a smoothing of the Green’s function
singularity (8), which is shown in Fig.3. In particular, this
smoothing property facilitates a fast calculation of the diagonal
1 1 matrix entries, for which the volumeasandv’ in (4) coincide.

2

| | |
%:: ?IZ e ?g %33:: ?Il Similar to the shown procedure and with small modifi-

:
!

2 cations to the filament formulas, the partial coefficients of
potential calculation (5) can be reduced to a double line

integral which is possible due to the mathematical similarity
Fig. 1. Two non-orthogonal conductor cells (a) and their corresponding
equivalent circuit (b). 1 6(x — zo) f(z)dz = f(z0)
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TABLE |
10° " i . COMPARISON OFINTEGRATION METHODS
%_ 1 -==-01/d
£ | —__nparallel Lpii[nH] | Lp2z[nH] | Lpiz2[nH] | Lpss[nH]
s | filaments N N N N
§ 10 : | T [msec] T [msec] T [msec] T'[msec]
g b exact 9.8936 - - -
3 P newfilament | 9.8934 5.70895 4.52591 | 0.364282
£ 10°} -’ . 1 integration 9E6 9E6 2E5 2E5
E == = algorithm 1E4 1B4 320 340
2 9.8921 5.70881 4.5260 0.36438
10* ‘ ‘ ‘ * 1E5 1E5 14065 12889
-1 -0.5 0 0.5 1 130 200 22 21
Distanced in cm 9.8958 5.71733 | 4.52618 0.369
* 2401 2401 3277 2485
Fig. 3. Mutual inductance between two parallel current filaments of length 2.7 3.9 5.9 4.1
I = 1lem. Approaching a zero distanag the inductancel is diverging comentional | 9.58759 5.424 416366 | 0.3633
to infinity. However, the divergencex log(2l/r) is relatively weak in
comparison to thel/d Green's function, which allows a more efficient - oL 2E6 2E6 2E6 2E6
numeric integration of the partial elements. integration 2000 2000 2000 2000
9.4819 5.025 4.153 0.3625
7E5 7E5 7E5 7E5
600 600 600 600

between equations (4) and (5). The main differences ithe
matrix calculation are the missing dot product and a constantnductance valueg.p;;of the non-orthogonal cell geometry from Fig. 2, obtained
Lt : . . different integration routines and with varying numeric integration resolutions.
surface Charge dens_lty .In equation (5)’ I-ﬂ ContraSt. toa Varlaﬁ@tionally, the number of integration ste@é and the corresponding computation
volume current density in (4). The remainder of this paper willne T is given for every inductance value.
focus on inductance calculations, keeping in mind that the
same technique of accelerated matrix fill-in can be applied for
the coefficients of potential, as well. . L
P . . for L1o and Los, @ numeric integration is mandatory. The
The proposed accelerated partial element calculation was . < : :
: ) i N . . proximity of cell 1 and 2 is a worst case for the mutual induc-
implemented in C++, using an adaptive integration routine . : . . .
ance calculation. Here, the recursive Simpson algorithm will

based on a recursive Simpson algorithm with error estimation . .
increase the number of filament evaluations near the contact

[8]. This gives the opportunity to selgct any de_swed 'megrat'%quface. The aspect ratio (length/thicknes30) of the shown
accuracy. Furthermore, the adaptive algorithm selects au-, . . .
. . . : cells is quite large. However, such thin and nonorthogonal
tonomously the number of interpolation points, which lowers . :
' . : : Structures are typical for many conductor geometries, e.g. [10]
the number of filament evaluations for inductive cells that are

. : . . nd [11]. To obtain another test case of mutual inductances,
far apart, and refines the integration for adjacent cells or t Qditi . -
self-terms additionally to the main current direction in Fig. 4 (dashed), a

second direction was introduced (dotted, corresponding).
The numeric inductance results are outlined in Table | for
IV. NON-ORTHOGONAL APPLICATION EXAMPLE different integration resolutions. Here, the conventional Gauss-

Fig. 4 shows an example of two inductive PEEC cells, faregendre (GL) integration is directly applied to equation (4)
which the Lp calculation is investigated in the following.and N gives the number of GL evaluation points. In the case
Cell 1 was chosen to be orthogonal. Therefore, an accurafethe proposed filament algorithm using equation (8),is
reference value oL;; can be obtained from an analytic exacthe total number of filament evaluations. Furthermore, the total
solution [9]. Cell 2 is a non-orthogonal hexahedral, henegmputation time on 8 GHz CPU is given, respectively.

Due to the singularity in the Green’s function (6), GL in-
tegration consequently underestimates inductances. Even with
fine resolution and hence with big numeric effort, the results do
not have a satisfactory accuracy. In contrast, the new proposed
method shows a good convergence behaviour, which results in
a more reasonable computation time.

Obviously, the most time intensive computations are still
performed for the matrix diagonal self-terms. Off-diagonal
element computations need less computation time, which is
further diminished with the increasing geometric cell distance.
For realistic problem sizes with e.g. = 10* nonorthogonal
cells, the new method allowsIa, and P, fill-in within 1 hour
for xx-accuracy in Table I, or about 10 minutes feaccuracy,

Fig. 4. Example cell geometry: two inductive PEEC cells. Two dil‘feren\{vhereas GL integration would require orders of magnitudes

current directions (dashed and dotted) and the cell corner point coordind89r€ computation time.
are given (inmm) so that numeric results are replicable.
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APPENDIX

Analytical solutions for the mutual inductandd between
two straight current filaments, placed in any desired position,
are given in [6], [13] and [7]. Due to the old age of the
citations and for the sake of completeness, the inductance
formula is briefly recapitulated. Equations (9) and (10) show
the expressions used for the partial element integration in
this paper. The required length and angle parameters can be
extracted from Fig.5. The inductance formula is analytically
§ v exact, however, care must be taken of the numerical evaluation.
. v o m T For special geometric arrangements, the hyperbolic functions
”””””” ’ as well as the fractions in (9) and (10) diverge to infinity. For
B - instance, this is the case when the filaments intersect, touch
or when they are in parallel. Nevertheless, the analytical limit
Fig. 5. Shown are two arbitrarily aligned current filamehtand m and is ealways well defined, and the use of a series expansion is

the required distances and angles for the mutual inductance calculation, See™ | . . .
equations (9) and (10). Two Plands, and E» are passed through the réquired to obtain accurate results when such a divergence is

filaments in such a way as to intersect at right angles. Here, is the detected.
intersection line between the planes, having the filamenin parallel. The

geometrical filament arrangement is completely determined by 6 independent
parameters, e.gR;...4, m andl.
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M = Lpss(R1, R2, R3, Rs) =Coss/ d:rPtiy
=2cose |(u+1) tanh ™" S (v+m)tanh™! _t tanh ™' — " — ytanh ' L _ Y ®
N a Ri+ R Ri+tRs " Rs + Ra Ro+ Ry  2tanc

1d*cose + (u+1)(v+m)sin’e 1 d*cose+ (p+ Drsin?e
: — tanh -
dRsine dRs sine
1 d?cose + pvsin®e ~ tanh-! d?cose + p(v +m)sin’e
dR3sine dRssine

with Q = tanh™
(10)
+tanh™




