

4.8 MHz GaN Class-D Power Amplifier and Measurement Systems for Next Generation Power Electronics

Pascal Niklaus and Johann W. Kolar

Postdoctoral Researcher Power Electronic Systems Laboratory ETH Zurich niklaus @lem.ee.ethz.ch Infineon TechTalk

03.03.2023

Next Generation Power Electronics (NGPE)

- Transition to a Net Zero Emissions Society relies on highly efficient power conversion/processing technologies
- Lower functional volume and faster dynamics required

→ Realized with increased switching frequencies

ETH zürich

Outline

Challenges resulting from increased switching frequencies up to the multi-MHz range

Converter Design and Testing

Measurement Technology

I-Measurement

Isolated V-Measurement

100 kHz Large-Signal Bandwidth GaN-Based 10 kVA Class-D Power Amplifier

Very High Power Density Converter Systems with Multi-MHz Switching Frequencies

UHBWPA: Applications + Specifications

- P-HIL → Three-phase Ultra-High Bandwidth Power Amplifier (UHBWPA)
- Focus on single-phase module of DC/AC stage

▼ UHBWPA Specifications

Parameter		Value
Peak Output Voltage per Phase	V _{out,pk}	$0 \dots 350 \mathrm{V}$
Output Frequency	fout	dc100 kHz
Output Power per Phase	Sout	0 10 kVA
DC Link Voltage	$V_{ m dc}$	$800\mathrm{V}$
Effective Switching Frequency	$f_{\rm sw,eff}$	4.8 MHz
System Efficiency (Nom. Op. Pt.)	η	95 %

→ Fast dynamics (100kHz) and high efficiency (95%) at nominal power of 10kW per phase

UHBWPA: Linear vs. Switch-Mode

→ Switch-mode for higher efficiency → 100kHz BW needs \approx 5MHz sw. frequency (1-stage filter)

 \rightarrow Advanced topology to increase f_{sw} with minimal losses and to reduce ripple with minimal volume

Advanced Circuit Topology

- Series & Parallel interleaving
- Multi-level switch-node voltage + very high effective switching frequency

 \rightarrow Find best combination of series (*M*) and parallel (*N*) interleaving

Output Filter Design

- Nominal operating point
 - 230 V_{rms}, 10 kW, 100 kHz
- Fixed $f_{sw,eff} = 4.8 \text{ MHz}$
- Filter design space
 - Max. BW \rightarrow min. f_c
 - 1% max. output volt. ripple
 - 15% max. ind. volt. drop
 - 30% max. cap. current

 $\bigstar L_{\text{filt}} = 1.26 \,\mu\text{H}, \ C_{\text{filt}} = 99 \,\text{nF}$ $\bullet \rightarrow L_{\text{br}} = N \cdot L_{\text{filt}} = 3.8 \,\mu\text{H}$

- ∇ L_{filt} = 0.6 µH, C_{filt} = 99 nF
 - Volume minimal filter

Filter Design Space $f_{\rm sw,eff} = 4.8 \,\mathrm{MHz}$ 200 $k_{\rm v} = 15\% \ n_{\rm SC} = 1 \ k_{\rm v} = 30\%$ Capacitance C_{filt} / nF N99 nF M-11.26 µH $N \cdot L_{\text{filt}}$ $V_{
m dc}$ Design $n_{\rm SC} =$ Vout-Space 0 0.5 *l*_{sum} lout 0 15 25 Inductance $L_{\text{filt}} / \mu H$ $L_{\rm filt}$ $v_{\rm out}$ 1_c Q

 \rightarrow Find best combination of series (M) and parallel (N) interleaving with given output filter and $f_{sw,eff}$

 $v_{\rm sw,eff}$

Optimal Design Selection

- Filter design space
 - $L_{\text{filt}} = 1.26 \,\mu\text{H}, C_{\text{filt}} = 99 \,\text{nF}$
- Nominal operating point
 - 230 V_{rms}, 10 kW, 100 kHz
- $70 \text{ m}\Omega$ / 600 V GaN HEMT (IGOT60R070D1)

90

155 W

5

6 # Levels M

Total Conduction Losses

7

8

 \rightarrow Selection of M=3 / N=3 considering efficiency / filter volume / design complexity trade-off

Levels M

Power Electronic Systems Laboratory

10

9

8

Branches *N* o 2 o 2 o

#

2

2

Levels M

Hardware Demonstrator – CAD

- M=3 / N=3 hardware single-phase 10kW demonstrator
- f_{sw,eff} = 4.8 MHz (800 kHz per device)
- Modular layout of N=3 branches

→ Three vertically stacked PCBs to maximize power density and signal integrity

ETH zürich

Power Electronic Systems

Laboratory

Power PCB – Power Commutation Loop

- Top-side cooled power semiconductors placed on bottom-side
- Minimum power commutation loop → Coplanar arrangement on two adjacent layers → Exemplary shown for T_{8H3} and T_{8L3}

→ Power loop inductance <2.2nH (outer sw. cell) / <1.5nH (inner sw. cell) (device: $L_{DS,int} \approx 3.5 \text{ nH}$)

ETH zürich

Power PCB – Gate Commutation Loop

- Gate-Drivers placed on top-side (adjacent to each switch)
- Minimum turn-on/off commutation loop → Coplanar arrangement on two adjacent layers → Exemplary shown for T_{4L3}

→ Gate loop inductance \approx 3nH (on-path) / \approx 4nH (off-path) (device: $L_{GS,int} \approx$ 7nH (!))

 \rightarrow No parasitic turn-on

Hardware Demonstrator – CAD

- M=3 / N=3 hardware single-phase 10kW demonstrator
- $f_{sw,eff} = 4.8 \text{ MHz} (800 \text{ kHz per device})$
- Modular layout of N=3 branches

→ Three vertically stacked PCBs to maximize power density and signal integrity

Measurement PCB – Isolated GD Supplies

 \rightarrow No overlap between primary and secondary + Low-C transformer \rightarrow High dv/dt immunity

Hardware Demonstrator – CAD

- M=3 / N=3 hardware single-phase 10kW demonstrator
- $f_{sw,eff} = 4.8 \text{ MHz} (800 \text{ kHz per device})$
- Modular layout of N=3 branches

→ Three vertically stacked PCBs to maximize power density and signal integrity

ETH zürich

Hardware Demonstrator

M=3 / N=3 hardware single-phase 10kW demonstrator

\rightarrow 25kW/dm³ (410W/in³) power density

Hardware Demonstrator – Volume Breakdown

M=3 / N=3 hardware single-phase 10kW demonstrator

→ Almost 40% of volume occupied by mechanical parts

Hardware Demonstrator – Inductor

M=3 / N=3 hardware single-phase 10kW demonstrator

 \rightarrow Pot core branch inductor \rightarrow No ext. fringing field \rightarrow No eddy-current losses in metallic enclosure

Experimental Verification

- Operation with sinusoidal reference at 100kHz and 10kW (full-load) output power (230Vrms, 43.5Arms)
- Open-loop operation
- 24 ns interlocking time

→ ≈40 dB attenuation of 3^{rd} and 5^{th} harmonic

 l_{L1}

 i_{L2}

 l_{L3}

*i*_{sum}

Experimental Verification

Operation with sinusoidal reference at 100kHz and 10kW (full-load) output power

 \rightarrow Adequate current balancing without active symmetry control

6A/div

6A/div

6A/div

18A/div

Experimental Verification: Efficiency

- M=3 / N=3 hardware demonstrator $\rightarrow f_{sw,eff} = 4.8$ MHz
- Open-loop operation with $V_{out} = 230 V_{rms}$
- 24ns interlocking time

Low-inductive load resistor (2kW)

İnfineon

→ $\eta = 95.8\%$ @ 100kHz, 10kW (nom. op. point)

 \rightarrow Losses dominated by (hard-) switching losses

ETH zürich

Experimental Verification: Efficiency

• Impact of output frequency and input capacitor connection @ $P_{out} = 3.3 \text{ kW}$

- → Significant drop at 70kHz (-1%) → ca. 80 App oscillation between 3L3 and Film-C DC-link bank
- \rightarrow Low-inductive connection to mitigate resonance

Thermal Management

- 4.5mm thin AI coldplate
- Direct cooling of power semiconductors + inductors
 - 12V / 14W Pump

Laboratory

- Volume Flow $\approx 2 l/min$
- 10I H₂O Tank \rightarrow "open-circuit" (No Heat Exchanger)
- 15mm x 2mm Channel

İnfineon

Outline: Output Voltage Control

- Cascaded current and voltage control
- v_{ref} , i_{load} and inductor voltage feedforward

 \rightarrow >300kHz closed-loop control BW possible

Power Electronic Systems

Laboratory

→ Minimal loop delay crucial for ultra-fast control

F. Krismer, et *al.*, "Optimized Cascaded Controller Design for a 10 kW / 100 kHz Large Signal Bandwidth AC Power Source," IEEE Energy Conversion Congress and Exposition (ECCE USA), Detroit, MI, USA, Oct. 11-15, 2020.

High-Frequency DC-Coupled Current Measurement Sensors

Bandwidth Extension of Commercial Hall-Effect Current Sensors to >10MHz

ETH zürich

LF + HF Sensor Combination

- Minimal error in the transition / combiner region
- Active combiner circuit

 \rightarrow 4 decades overlap required \rightarrow Possible with lower sensor response overlap range?

ETH zürich

LF + HF Sensor Combination

- Inherent well-defined high-pass response of HF sensor
- Manual matching of crossover frequency

\rightarrow Only 2 decades overlap required \rightarrow Find suitable HF sensors

Investigated HF Sensors

- Max. BW and minimal volume
- ▼ Isolated Inductive Voltage Sensing

▼ Current Transformer

◄ Pickup Coils
 → Highest BW + linear

 \rightarrow Which sensor offers best performance?

Experimental Verification – Frequency Response

All sensors tested in-circuit

Setup Frequency Response

▼ Frequency Domain

- \rightarrow 10MHz BW fulfilled with all sensors
- → PUC C with highest BW and smallest form factor

Experimental Verification – Time Domain Behavior

All sensors tested in-circuit

Time Domain – Sensors after L

- → Accurate tracking of triangular current
- → PUC C with highest BW and smallest form factor

High-Bandwidth Isolated Voltage Measurements with Very High Common Mode Rejection Ratio

Accurate Measurements during Fast Voltage Transients

Modeling of Required CMRR

- Spectral envelope of trapezoidal CM voltage
- Rectangular error voltage

 \rightarrow Only V_{dc} + dv/dt determine CMRR requirement and NOT switching frequency

Power Electronic Systems Laboratory

For $\Delta v_{\epsilon,pp} = 1 \text{ V}$

 $\Delta v_{\epsilon,pp} = 1 \text{ V}$

Isolated Voltage Measurement System

- Small and decoupled $C_{earth} \rightarrow$ Low CM current i_{CM}
- Several measures to limit/redirect i_{CM}

→ Fully independent of other equipment (no oscilloscope etc. required)

Isolated Voltage Measurement System

- Battery operation (ca. 2h for power cons. of 2W)
- Low-C isolated power supply

SEPIC + FB

■ Wide input voltage range (5 – 50 V), 5 W output power

 \rightarrow Coupling capacitance <2pF, isolation >1kV (tested)

 \rightarrow Unlimited operating time

Power Electronic Systems Laboratory

26 mm

66 mm

19 mm

Experimental Verification

Conclusions / Summary

- Test and verification of Next Generation Power Electronics
 - ▼ 3L3 UHBPA

- Part of P-HIL test env.
- Topological evaluation
- Hardware demonstrator with 25 kW/dm³ power density
- 95.8% efficiency @ 230V_{rms}, 10kW, 100kHz

- Hall sensor BW extension to >50MHz
- Diff. HF sensors compared
- Superior CMRR
- Compact design

▼ V-Sensor

- Isolated V-measurement
- Fluctuating ref. potential
- Isolated measurement system realized
- 130 MHz BW + 100 dB CMRR @ 100 MHz
- → Several challenges related to very high switching frequency converters addressed

Power Electronic Systems Laboratory

Thank you!

Further Reading:

- P. S. Niklaus, J. W. Kolar, and D. Bortis, "100 kHz Large-Signal Bandwidth GaN-Based 10 kVA Class-D Power Amplifier with 4.8 MHz Switching Frequency," IEEE Transactions on Power Electronics, Vol. 38, No. 2, pp. 2307-2326, February 2023. DOI: https://doi.org/10.1109/TPEL.2022.3213930
- F. Krismer, V. Behrunani, P. S. Niklaus, and J. W. Kolar, "Optimized Cascaded Controller Design for a 10 kW / 100 kHz Large Signal Bandwidth AC Power Source," in *Proc. of the IEEE Energy Conversion Congress and Exposition (ECCE USA)*, Detroit, MI, USA, October 11-15, 2020 DOI: <u>https://doi.org/10.1109/ECCE44975.2020.9236149</u>
- P. S. Niklaus, D. Bortis, and J. W. Kolar, "Beyond 50 MHz Bandwidth Extension of Commercial DC-Current Measurement Sensors with Ultra-Compact PCB Integrated Pickup Coils," *IEEE Transactions on Industry Applications*, Vol. 58, No. 4, pp. 5026-5041, August 2022. DOI: <u>https://doi.org/10.1109/TIA.2022.3164865</u>
- P. S. Niklaus, R. Bonetti, C. Stäger, J. W. Kolar, and D. Bortis, "High-Bandwidth Isolated Voltage Measurements with Very High Common Mode Rejection Ratio for WBG Power Converters," *IEEE Open Journal of Power Electronics*, Vol. 3, pp. 651-664, September 2022.

