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Abstract 
 
Inductive components like inductors and transformers are basic elements in power electronic circuits. Therefore, 
understanding the electromagnetic behavior and the dimensioning of theses components is essential. However, 
after attending introductory courses in basic electrical engineering many students still lack a deeper 
understanding of the physics of inductors and transformers. This paper describes educational software (iPES - 
Java applets freely available on the Internet) which should help the students to get a better insight into the 
physics of passive power electronics components. iPES does show the distribution of the electromagnetic fields 
of inductors, transformers where the geometric properties of the magnetic cores and the permeability of the 
magnetic material could be changed interactively.  
 
1. Introduction 
 
1.1 Teaching Passive Components in Power Electronics  
 
Generally, passive components in power electronics like inductors, transformers or capacitors are often taught in 
power electronics courses based on equivalent circuits and idealized mathematical descriptions. One important 
reason for this is that it is difficult to visualize the distribution, the time behavior and the interaction of 
electromagnetic fields, especially in the presence of media described by permeability or permittivity. Equivalent 
circuits of inductors and transformers could give the students a quick introduction but fail to show the physical 
background of non-ideal behavior like stray fields and capacitive coupling of windings which is important for 
determining the behavior of the components in a power electronic circuit.  
 
In order to support the teacher by explaining passive components being essential for power electronic systems 
like inductors, transformers, capacitors and heat sinks based on field theory, the authors have developed the 
software module iPES-Fields as part of the Interactive Power Electronics Seminar [1], [2].     
 
1.2 Interactive Power Electronics Seminar (iPES) 
 
The Interactive Power Electronics Seminar (iPES) is software developed at the Swiss Federal Institute of 
Technology (ETH Zurich) for supporting the teaching of a basic course on power electronic circuits and 
systems. iPES consists of HTML text with embedded programs (so-called Java applets) for interactive 
animation and simulation. The user-interface is very easy to use and mainly self-explaining. The software 
requires just a standard web-browser, i.e. no installations are necessary. iPES is freely available at 
www.ipes.ethz.ch, can be accessed online via Internet or downloaded and installed on the local hard-disc.  
 
iPES went online in July 2001, the free download is available since January 2002. At the time of this writing 
(May 2002) there have been about 2,000 downloads and more than 12,000 visitors (3,000 visitors during May) 
on the iPES website.  
 
The seminar (“iPES-Circuits”) consists of a basic course on power electronics which is currently available in 
English, German, Japanese, Korean and Chinese. A second module, called “iPES+” represents a collection of 



more complex modern power electronic systems still under research or already used in industry with emphasis 
on three-phase PWM converter systems and three-phase matrix converters.  
 
A third module, called “iPES-Fields” is dedicated to teaching the basics and the dimensioning of passive 
components in power electronics with emphasis on the underlying physics and electromagnetic fields. iPES-
Fields  will be described in detail in this paper. There, the algorithms employed for calculating the distribution 
of the electromagnetic fields are treated and problems related with the programming of such computational-
intensive algorithms in the Java programming language are discussed. Furthermore, it will be shown how the 
applets could be used in education.      
 
 
2. Inductors  
 
2.1 Motivation 
 
In lectures dedicated to basics of electrical engineering inductors are often discussed only in a very general way. 
Typically, the geometry of the magnetic circuit and the number of windings are given and the student learns 
how to calculate parameters like the magnetic flux density and the inductance. Most practical problems are 
requiring a quite different approach, i.e. a desired inductance is given and the engineer has to find the optimum 
geometry of the magnetic circuit and/or number of turns with respect to volume, power losses or realization 
costs. Frequently, student do experience difficulties with 
• understanding the interdependence between the magnetic circuit geometry and the number of turns  under 

the consideration of the maximum admissible magnetic induction of the magnetic core material, the 
available area for the windings, and a maximum tolerable temperature of the windings 

• understanding that an air gap is necessary for preventing magnetic saturation of the core, and/or for storing 
the magnetic energy of the inductor  

• understanding that a defined inductance can be realized using a magnetic core with small cross section in 
combination with a high number of turns, or vice versa.  

 
Such deficiencies have motivated the development of an interactive Java applet for showing the fundamental 
relationship and interdependence of the geometry of the magnetic circuit, i.e. the cross section of the magnetic 
core, the width of the air gap, and the windings area, and the number of turns, the cross section of the current 
carrying conductors, the magnetic flux density, and the temperature of the windings. Furthermore, the 
distribution of the magnetic flux of the inductor is calculated using a finite element method (FEM). Therefore, 
the student also could gain a very detailed insight into the physics of the inductor, e.g. by studying the applets it 
becomes immediately clear how the magnetic core of the inductor influences and guides the magnetic flux lines.  
 
 
2.2 Applets Describing General Magnetic Fields and Magnetic Flux 
 
The inductance is the magnetic flux divided by the current causing the magnetic flux density B which defines 
the magnetic flux. Therefore it is important to have a clear understanding of the relation between current, 
resulting magnetic flux density and magnetic flux as a basis for understand the physical background of 
inductance.  
 
For making students familiar with the basics of magnetic fields, an applet visualizing the magnetic flux lines of 
conductors of infinite length orientated perpendicular to the drawing plane is provided (cf. Fig.1). The student 
can change the position of the conductors by dragging with the mouse and experience how different positions do 
influence the field distribution as visualized and described by the magnetic flux lines. The applet is self-
explaining and the new field distributions are calculated very fast so that the student gets the impression of an 
immediate reaction of the software.  
 
The applet depicted in Fig. 1 shows the magnetic field distribution (magnetic flux lines) in free space. However, 
in technical systems materials do show magnetic properties and therefore do take influence on the magnetic 
field. For calculating the magnetic field in the presence of permeable material one has to refer to a finite element 
analysis. A detailed discussion of the finite element algorithm which is used in the applets (like the one shown 
in Fig. 2) and also of the implementation in the Java programming language is presented in section 5. In this 
section the discussion is restricted mainly to educational issues for the sake of clarity.  
 



   
 
Fig. 1: Magnetic flux lines of impressed currents of opposite directions in conductors of infinite length oriented 
perpendicular to the drawing plane. The positions of the current carrying conductors can be changed with the mouse.  
 

   
 
Fig. 2: By changing the permeability of the rectangular magnetic material one can experience how the magnetic flux lines 
are influenced by permeable material.  
 

   
 
Fig. 3: By changing the size, shape and permeability of the rectangular shaped magnetic material one can see how the 
magnetic flux lines are influenced by material with magnetic properties. Furthermore, the influence of the magnetic material 
and of the geometry on the magnetic flux is shown.  
 
The applet depicted in Fig. 2 shows the magnetic field distribution (visualized by the magnetic flux lines) in the 
presence of permeable material. The current carrying conductors again can be dragged with the mouse. The 



permeability of the magnetic material can be changed by clicking one of the two triangular symbols shown in 
red. The relative permeability µr can be increased starting from 1.0 (free space). In Fig. 2 the permeability is set 
to µ r=6.0 and the influence of the material on the magnetic flux lines is obvious. The applet shown in Fig. 2 
was designed to show the effect of magnetic shielding.  
 
Finally, Fig. 3 shows one of the applets designed for explaining the meaning of magnetic flux. The plane lying 
in between the two conductors is represented by a green line, the magnitude of the magnetic flux through this 
plane is calculated and visualized by a bar diagram in the right-bottom corner of the applet.  
 
With this, the student immediately learns that the relative position of the conductors (carrying constant current) 
does take a strong influence on the magnetic flux. The larger the distance the larger the magnetic flux. 
Furthermore, the student experiences that increasing the relative permeability µr and/or the dimensions of the 
magnetic material do increases the magnetic flux.  
 
2.3 Applets Describing Inductance  
 
The applet depicted in Fig. 4 shows a coil (inductor) without a magnetic core. The shape of the coil can be 
changed by dragging one of the two the red dots on the circumference. The student could see that a long coil 
results in a magnetic field which is approximately constant within a large region inside the coil. If the coil is 
very short the magnetic field is not constant but more like a field resulting from two parallel conductors (as 
shown in Fig. 1).  
 

   
 
Fig. 4: The dimensions of the coil can be changed by dragging the red dots with the mouse. The applet shows the magnetic 
flux lines. While changing the dimensions of the inductor the value of the ampere-turns remains constant.  
 

   
 
Fig. 5: By changing the permeability of the magnetic core one can see how the magnetic flux distribution is influenced by 
magnetic material. The shape of the magnetic material is typical for an inductor.  
 



The applet shown in Fig. 5 should help the student to understand the field distribution in case of the presence of 
a magnetic core with a high relative permeability µr. The current carrying conductors can be dragged with the 
mouse in order to change their positions. The relative permeability µr of the magnetic core can be increased 
starting from 1.0 (free space) to higher values by simply clicking on the triangular symbols with the mouse. The 
student learns that magnetic material does increase the magnetic field and, on the other hand, concentrates the 
magnetic flux into the core material. Since the current in the conductors is constant, the inductance of an 
inductor can be increased by increasing the relative permeability of the core material. This increase is limited by 
the air gap, as will be shown by the applet discussed in the following section.  
 
2.4   Design of an Inductor  
 
After learning about magnetic flux density B, magnetic flux lines, stray fields, magnetic material and/or 
permeability the student has to design an inductor. As typically given in power electronics practice the rms 
value and peak value of the  current, and the desired value of the inductance are defined and the conductor 
diameter (cross section), geometry and permeability of the core material, the number of turns and the width of 
the air gap have to be selected. These parameters have to be selected during the design process considering 
target functions like minimum size, minimum volume or weight or minimum costs.  
 

    
 
Fig. 6: The applet shows an intuitive and user-friendly step-by-step approach for dimensioning an inductor for a power 
electronics converter. The calculations are based on simplified analytical equations as given in the applet. Stray fields are 
neglected. 
 
Since there are a lot of parameters to be considered it is often confusing for the student how to start. The applet 
depicted in Fig. 6 guides the student through the design process, gives hints what to do and why, shows the 
relevant mathematical relations and does perform all calculations in the background. There, the equations used 
are based on approximations like neglecting stray fields. Furthermore, the available core geometries are limited 
to a few standard types.  
 
 
3. Magnetic Fields in Rotating Machinery  
 
Besides inductors and transformers, electric machines are a main topic for applied electromagnetic field theory. 
For electric machines besides changes of the fields over time also changes of the geometry could occur. A basic 
property of electric machines is a rotating magnetic field. Such rotating field can be formed by feeding 
conductors lying on a circle and displaced by 2π/3 with a symmetric three-phase current system, as formed by 
phase currents of equal amplitudes and a phase displacement of 2π/3. The resulting rotating magnetic field is 
visualized by the applet.  
 
If in the applet depicted in Fig. 7 the “RUN”-button is clicked the vertical time-marker starts to move and the 
magnetic field starts to rotate, accordingly. The student could change other parameters with the mouse and could 
e.g. experience that changing the positions of the conductors does result in a distortion of the constant 
magnitude and/or constant angular speed of the rotating field.  
 



  
 
Fig. 7: The symbols "x" and "o" shown in red do denote impressed currents of opposite directions in conductors of infinite 
length oriented perpendicular to the drawing plane. Always two conductors of equal denomination can be considered to form 
a phase winding.   
 
 
4. Current Research to be Released in the Future 
 
4.1 Transformer 
 
In introductory lectures on electrical engineering, which are the basis of more specialized courses like power 
electronics, transformers are often explained in a strict mathematical manner in addition to equivalent circuits. 
Therefore, students do have difficulties with getting an understanding of the fundamental physical principles of 
a transformer, e.g., frequently the fundamental relationship between the magnetic flux and the applied voltage 
and the physical reason for the balance between the primary and secondary ampere turns is not fully understood. 
Furthermore, the magnetic stray field and/or stray inductance of a transformer often remains mysterious to the 
students.  
 
The authors are currently developing applets (for future release) which can be used to teach and demonstrate the 
following relationships:  
• the magnetic flux in the transformer magnetic core is in a first approximation independent from the load 

connected to the secondary as primary current changes such that the both current flows do cause a magnetic 
flux as defined by the impressed primary input voltage  

• the magnetic flux is defined by the applied voltage and therefore does not change if an air gap is inserted 
into the magnetic circuit and/or the width of the air gap only does take influence on the magnetizing current 
in a first approximation  

• a short circuit of the secondary (representing an extreme load condition, like RLOAD=0) prevents changes of 
the magnetic flux linked with the secondary winding, therefore, the transformer magnetic field can only 
exist as stray field in between primary and secondary. This clearly shows that in this case the transformer 
input current is defined by the stray inductance what can be proven by changing the physical location of the 
primary winding in relation to the secondary winding.  

 
4.2 Capacitor 
 
A collection of Java applets for studying the basic behavior and design of capacitors from the viewpoint of 
power electronics is currently under development. The applets will explain the electric field intensity E and the 
electric scalar potential of a geometry carrying electric charges. The physical meaning of electrical field 
intensity and its relation to the electric scalar potential will be shown, furthermore the meaning of voltage will 
be shown by the difference of the electrical scalar potentials in between two locations.  
 
The electric field intensity E of geometries (like parallel plates of a capacitor) will be calculated in a way 
comparable to the applets shown in section 2, i.e. the finite element method will be employed in the applets in 
order to show the influence of dielectric material on the electric field intensity. One applet will show how the 
capacitance of a capacitor changes if material with a relative permittivity  εr > 1  is inserted in between the two 
plates. The material can be dragged to different positions with the mouse, and the relative permittivity εr can be 
increased by clicking an according symbol with the mouse.  
 



While the applets described above should help the student to understand the physics of a capacitor, there 
furthermore will be an applet to do a practical design (helping to define selection criterions) of a capacitor for 
power electronics applications.  
 
4.3 Heat Sink  
 
Switching and conduction losses of power semiconductors do increase the junction temperature. In order to limit 
the junction temperature which directly does influence the useful life a low thermal resistance in between 
junction and ambient has to be provided what could be achieved by employing a heat sink. 
 
For teaching the student the basics of temperature increase due to heat conduction, the concept of thermal 
resistance and the corresponding electric equivalent circuit, as well as the transient thermal behavior (i.e. 
thermal capacitance) the authors are currently developing Java applets for visualizing the basics of 
thermodynamics related to power electronics. Some of the applets will employ finite element methods while 
others will be based on analytical calculations. These applets to be released in near future will constitute another 
iPES module (“iPES-Thermal”) and will have interfaces comparable to the applets described in this paper.  
 
 
5. Finite Element Method Implemented by a Java Applet 
 
5.1 The Finite Element Method 
 
The electromagnetic field is described by the four Maxwell equations:  
 

∇ x H = S + ∂D / ∂t  ∇ x E = - ∂B / ∂t   ∇B = 0   ∇D = ρ   (1) 
 
with the three-dimensional time-dependent vector fields 
 

D = ε E    and  B = µ H         (2) 
 
D … electric flux density  E … electric field intensity ε … permittivity  
B … magnetic flux density  H … electric field intensity µ … permeability  
 
The current density S is also a three-dimensional time-dependent vector field, while the electric charge density ρ 
is a scalar function dependent on position (x,y,z) and time (t). If one knows the distribution of the 
electromagnetic field, i.e. E(x,y,z,t), D(x,y,z,t), H(x,y,z,t), and B(x,y,z,t) it is straight forward to calculate the 
sources S(x,y,z,t) and ρ (x,y,z,t) of this electromagnetic field distribution using the equations given above. 
Unfortunately, in practice the sources like the location and current of a winding are well known, but the 
resulting electromagnetic fields have to be calculated. Generally, this is not easy to perform.  
 
The finite element method (FEM) is a mathematical method, which could be used for solving such problems in 
approximation. The idea is to divide the area of the unknown field into geometrically small elements, e.g. 
triangles or rectangles. The equations describing the field are linearized within each geometric element and the 
linearized equations are coupled to each other resulting in a large set of equations. The number of elements 
directly correlates with the number of equations to be solved. The FEM has proven to be very effective for 
calculating electromagnetic field distributions. Since a large number of elements is needed for achieving a given 
accuracy of the solution, the set of equations which is represented by a matrix becomes very large what results 
in a long computation time.  
 
 
5.2 Finite Element Method in Magnetostatics Employed in iPES-Fields 
 
In order to calculate electromagnetic field distribution in an interactive Java applet the points as listed in the 
following have to be considered.   
 
• The algorithm should show a very low computation time. 
 
iPES-applets performing numerical circuit simulation are based on the following idea: Whenever the user 
changes a parameter with the mouse, the new parameter value is used by the simulation algorithm for calculate 
the new time behavior shown in an according applet. The impression of the user should be that the new time 



behavior is not calculated in the background but present immediately. This should also work on a slow computer 
(230 MHz CPU) because students studying at home are a large share of the user group. Therefore, simple Euler- 
and Trapezoidal-algorithms are employed in most of the circuit simulations. To the experience of the authors as 
long as the calculation in the background takes less time than about 200ms the user regards the applet to be 
immediate responsive. If the calculations running after a parameter has been changed do take longer than about 
1.0 second the responsiveness of the applet is not acceptable for many users. Accordingly, making the 
algorithms fast enough (calculation time not longer than 2 or 3 seconds on a 230 MHz PC) is of major 
importance for FEM-applets.  
 
• The compiled code for the algorithm should be of small size (small number of bytes)  
 
Whenever opening the web page containing an applet, the whole applet-code is downloaded. While on a fast 
Internet-connection as installed at many universities and companies downloading even a few Megabyte is 
completed within seconds, it is essential to keep the size of the applet below 100kB in order to make it 
acceptable for people connecting to the Internet with modems. Therefore, iPES applet size is always below 70kB 
what typically is comparable to one or two pictures in JPG-format. Putting a FEM-algorithm into a Java applet 
can be done under the restrictions of size as long as the menu-options for the user are limited and the applet is 
dedicated to a specific topic like the distribution of the magnetic field of an inductor.  
 
• The post-processing has to be done in a very short time.  
 
Post-processing means that field distribution is visualized employing field lines, equipotential lines, vector fields 
and the like. For the visualization of the magnetic field distribution one has to calculate the magnetic flux lines. 
If the FEM algorithm directly calculates the magnetic vector potential AP (x,y,z), the equipotential lines of the 
magnitude of AP (x,y,z) are the magnetic flux lines to be shown [4]. There, equal magnitude increments between 
neighboring flux lines have to be considered. If the FEM algorithm gives field quantities like B(x,y,z) or 
H(x,y,z), the vector potential AP has to be calculated from those field quantities resulting in significantly 
increased computation effort and reduced accuracy. Since the whole algorithm has to be as fast as possible, a 
FEM algorithm calculating directly AP (x,y,z) has been selected in order to reduce the post-processing efforts.  
 
• Minor errors in the resulting field distributions are acceptable because the applet is for educational purposes 

and its aim is to show basics of the electromagnetic field, and not the detailed calculation of a technical 
problem.  

 
This means that the number of elements for describing the problem can be relatively low. This reduces the 
accuracy of the results but also does reduce the calculation time significantly. For making the applets interactive 
(in the style of the circuit simulation applets of the iPES project, iPES-Circuits) reduced calculation time is 
essential as long as the quality of the results is sufficient to teach the theory.  
 
 
Considering the points listed above the FEM algorithm described in the following was selected and is employed 
in the Java applets. The currents flow always is in conductors of infinite length oriented perpendicular to the 
drawing plane. All calculated fields are two-dimensional.  
 
In case of isotropic magnetic material the electromagnetic field is described according to  
 

B = µ0 (H + M) = µ0 µr H          (3) 
H = 1/(µ0 µr) B           (4) 
M = 1/µ0 (1 – 1/µr) B          (5) 

 
For a two-dimensional magnetic flux density B(x,y) in the (xy)-plane and one or more current-carrying 
conductors orientated in z-direction we can write 

 
B(P) = (µ0 I1)/(2π rP,I1) eB  rP,I1 … distance between point P and conductor (current I1 ) (6) 
B(P) = Σ(i) (µ0 Ii)/(2π rP,Ii) eB,i rP,Ii … distance between point P and conductors (current Ii ) (7) 

 
Regarding to the elementary current theory of magnetism [5] the magnetic flux density of material with 
permeability different from air is caused by so-called elementary currents within the material. If we divide the 
magnetic material into many small two-dimensional geometric elements, then each element has such elementary 
currents flowing on the element’s border in z-direction. Under this assumption the magnetic flux density in each 



point can be calculated from currents impressed in current conductors and elementary currents on the border of 
the elements.  
 

B(P) = Σ(k) (µ0 Ik)/(2π rP,Ik) eB,k + Σ(i) (µ0 IEi)/(2π rP,IEi) eB,i     (8) 
Ik ....  impressed current of conductor k  
IEi ....  elementary current of geometric element i  

 
The magnetic flux density B can be calculated directly from all currents (impressed conductor currents and 
elementary currents) because of the 3rd Maxwell equation B is a pure curl-field. This is not true for the magnetic 
field intensity H.  In the following, we will calculate B, therefore.  
 
Generally, for two-dimensional field-components we can write for the vector field of the magnetization vector 
M(x,y,z) at the boundary between two materials 1 and 2 with vector n (normalized, pointing from material 1 into 
material 2) defining the shape of the border [5]  
 

∇ x M = n x (M2 – M1) = αE = αE eZ       (9) 
 
For each geometric element 1 and the neighboring element 2 the density of the elementary current αE (flowing 
in z-direction at the border between the two geometric elements) can be calculated as 
 

αE eZ = IE /∆d eZ = n x (M2-M1) = n x 1/µ0 (1 – 1/µr) (B2 -B1)     (10) 
 
where ∆d is the length of the boundary between the two geometric elements, B1 and B2 are the magnetic flux 
densities (to be calculated) within the two elements, and µr is the magnetic permeability of the two elements. If 
magnetic saturation has to be considered the permeability µr of each element has to be defined individually for 
each element.  
 
Solving Eq.(10) we can express the elementary current IE flowing in z-direction at the border of the two 
neighboring elements as 
 

IE = ∆d /µ0 (1 – 1/µr) (nX ∆BY – nY ∆BX)        (11) 
with  

∆B = B1 – B2 = (∆BX, ∆BY, 0) = (B1X -B2X, B1Y -B2Y, 0)      (12) 
 
as the difference field and  n = (nX, nY, 0).    
 

 
 
Because the elementary current IE can be calculated from the difference of the magnetic flux densities B1 and B2 
of two neighboring elements 1 and 2 (equation 11), and both magnetic flux densities B1 and B2 can be calculated 
from all currents (equation 8), we can eliminate the magnetic flux densities B1 and B2 and express the 
elementary current IE at a certain point as sum of quantities dependent on the other elementary currents between 
all other geometric elements, the impressed currents in the conductors, the geometric distances and the 
permeability.  
 
Equation (11) shows the dependency of the unknown elementary current IE1 between two geometric elements. If 
we divide the magnetic material into many small geometric elements, between always two such neighboring 
elements an unknown elementary current has to be considered which can be express by an equation in 
dependency of all the other elementary currents and the impressed currents. If there are n unknown elementary 
currents, then there are n such equations forming a system of n linear equations which can be written and solved 
in matrix form   

Fig. 8: Magnetic material modeled with two elements. The 
elementary current IE between the two elements 1 and 2 is 
calculated according to equation (11).  



A x = b           (14) 
 
with x as the vector holding all unknown elementary currents, A as the (n x n)-matrix defined by the geometry of 
the problem (and with the permeability describing the magnetic material), and b as the vector considering the 
impressed currents in the conductors.  
 
The matrix A is dense and not symmetric. This means that the solution of Eq. (14) can be very problematic 
because rounding-errors do influence and distort the correct solution and could cause instability of the solution 
for certain parameters. On the other hand the approach shows two main advantages. First, only the magnetic 
material has to be divided into geometric elements, while all fields outside magnetic materials can be calculated 
easily using Eq. (8). In the magnetic field problem considered large areas with non-magnetic material (free 
space) are surrounding magnetic material. This means that a few elements might be sufficient to describe the 
problem resulting in a small matrix A. In the Java applets the number of the unknown elementary currents 
typically is between 20 and 200. The calculation time on an 800 MHz PC remains under about 0.5 seconds in 
case of a (200 x 200)-matrix A. The second advantage comes from a significant reduction of the post-processing 
effort. The FEM-algorithm results in the matrix equation (cf. Eq. (14)) with the elementary currents as solution. 
From these elementary currents the magnetic flux density B can be calculated directly (cf. Eq. (8)), but also the 
magnetic vector potential AP, required for defining the magnetic flux lines, can be calculated directly according 
to 

B(P) = ∇ x AP = (∂/∂x, ∂/∂y, ∂/∂z) x (AP,X, AP,Y, AP,Z)      (15) 
B(P) = ((µ0 I)/(2π y), 0, 0)         (16) 

 y  …. distance between point P and conductor (current I) 
∂AP,Z / ∂y = (µ0 I)/(2π y)         (17) 
AP,Z = (0, 0, -(µ0 I)/(2π ln(y)))        (18) 

 
Knowing AP the magnetic flux lines (which are typically used for visualizing the solution of the field problem) 
can be computed directly as equipotential lines of the scalar magnitude of AP (x,y).  
 

(a)  (b)   
 
Fig. 9: (a) Computation of the flux lines for µr = 5 using Maxwell 2D; (b) computation of the flux lines (µr =5) by the Java 
applet.  
 
The FEM algorithm described above can be realized easily by a Java applet, the size of the applet is far below 
the limit of 70kB, and the calculation time is sufficiently low, i.e. about 0.5 seconds on a 800 MHz PC for each 
calculation for a magnetic material as shown in Fig. 9(b) divided into 178 geometric elements. For evaluating 
the accuracy of the FEM algorithm the flux lines of a given geometry were calculated with the Java applet and 
compared to the result of a Maxwell 2D [10] simulation (cf. Fig. 9(a)). The very close accordance of both 
calculations can be verified in Fig. 9. 
 
 
6. Conclusions  
  
In this paper educational software (a collection of Java applets) has been introduced for visualizing magnetic 
fields of inductors and magnetic components in an interactive style. The calculation of the magnetic flux lines is 



based on a FEM (finite element method) algorithm based on elementary currents which gives results in good 
accordance with calculations performed by the field solver Maxwell 2D. By choosing a FEM algorithm as 
described in the paper and optimizing the program code the calculation times are kept very short.  
The paper shows that it is possible to do FEM analysis inside a Java applet on a standard 800 MHz PC within 
one second as long as the number of unknown elements is smaller than about 300. Such a short calculation time 
is necessary to make the applets interactive in the style of the iPES-project. For the future (2003) it is planned to 
release educational Java applets to show stray fields in transformers, to show thermal effects relevant for power 
electronic devices and systems, and to visualize internal fields of power semiconductors (like diodes). 
 
 
Appendix 
 
A. The Java Programming Language  
 
All applets as described in this paper are written in Java. Java is a very popular object-orientated computer 
programming language with syntax like C/C++. Java is easier to learn than C or C++ (e.g., in Java there are no 
pointers), and is designed and optimized keeping safety, platform independence and networking applications in 
mind. A Java program runs inside a so-called Virtual Machine (VM). This is, roughly speaking, a kind of 
software emulating a microprocessor, where the Java program is interpreted by this VM. VMs can be considered 
as software layer above the operating system and are available for various operating systems (Windows, Unix, 
Linux) via downloading and installing the freely available Java Runtime Environment (JRE) [8]. Furthermore, 
the JRE (with the VM) is part of and/or available as plug-in for modern web-browsers (like Netscape, Internet 
Explorer, Opera). If the Java program is embedded in a web page (HTML), the web-browser’s VM 
automatically starts executing the Java program (which is called “applet” in this case) when the web page is 
opened. Then it is possible to run also complex programs inside the web-browser. Since the Applet only needs a 
Java-enabled web-browser it is very easy to distribute via Internet and can be immediately used without 
inconvenient installations.  
 
Originally Java was not designed to do numerical calculations with good efficiency. Therefore, in the 
applications described in this paper, where FEM analysis is employed, the programming of the numerical 
algorithms has to be done very carefully with the performance in mind [7].  
 
 
B. Basic Strategies of Tuning the Code of the FEM Java Applets 
 
Basically, the sequence of computations inside a FEM applet can be characterized as 
 
• setting up the matrix A 
• solving the matrix equation A x = b 
• calculating the flux lines for the whole drawing area  
• drawing the flux lines and other graphics 
 
The execution speed of the code will differ on various computers, not only because of different CPUs but also 
according to different VMs. The Java language defines a method (this is the name of a function in Java) for 
measuring the execution time within a code block   
 

long t1 = System.currentTimeMillis();  
/* code block of which the execution time has to be measured */ 
long t2 = System.currentTimeMillis();  
long delta_t = t2-t1;  

 
Using the above-given code scheme it is a simple task to consequently measure the execution times of the code 
blocks inside the applet and to find out where most time is spent. Experiments showed the following for the 
applet depicted in Fig. 9(b):  
 
Setting up the matrix and solving the matrix equation is not very time-consuming because the size of the matrix 
is (178 x 178) and/or relatively small.  

A considerable amount of time is spent with calculating the flux lines because there are (200 x 200) 
pixel-points and the value of the magnetic vector potential AP has to be calculated for each point, which means 



calculating equation Eq.(18) 40,000 times. Therefore, it does make sense to concentrate performance tuning of 
the code on this loop. Because the problem is two-dimensional the vector potential has to be calculated based on 
a natural logarithm. As the calculation of the natural logarithm implemented in the mathematical standard 
library of Java is extremely slow, an implementation of the logarithm in form of a Taylor-series has been 
performed, where considering only a limited number of elements of the series does result in some distortions of 
the flux lines shown. This deficiency will be improved by a better approximation function in a later version of 
iPES-Fields.  

Another significant improvement of the calculation speed is made possible by changing the data format 
of the floating-point numbers inside this 40,000-times loop from double (taking up 8 bytes as specified by the 
IEEE 754 standard) to float (4 bytes, also specified in IEEE 754). This reduction in precision does not take 
effect on the resulting flux line distribution but does considerably increase the speed of the loop-execution.  

Another large improvement could be achieved by using simple predefined drawing-methods of the 
standard Java object Graphics instead of setting each pixel-point directly with MemoryImageSource 
which is often used in animation or game-programming to realize sophisticated graphics.  
 
Such changes of the code have improved the calculation speed by a total factor of about 10. The parts of the 
code most promising for performance tuning were identified systematically with the scheme described above. In 
the meantime more code segments to be optimized concerning calculation speed have been identified and will 
be improved for a future version of iPES-Fields. It is important to mention that employing so-called “native 
code”, i.e. executable code, for example resulting from C-compilation, inside the Java code for speeding up 
time-critical calculations, can not be used inside unsigned Java applets for security reasons (native code is not 
restricted by the security system of the Java Runtime Environment which makes execution very fast but has the 
potential to hide dangerous computer viruses).  
 
The following execution times have been measured on a notebook-computer with a Pentium III CPU / 650 MHz 
and 128 MB RAM. The times given are average values   
 
Setting up the matrix A (178 x 178)    10 ms 
Solving the matrix equation A x = b    65 ms 
Calculating the flux lines for the whole drawing area   300 ms 
Drawing the flux lines and other graphics   2 ms 
 
The following table will give an impression of the average calculation time for different sizes of the matrix A. 
The applets described in this paper work with matrix-sizes in between (20 x 20) and (400 x 400). The applet 
shown in Fig. 9(b) employs magnetic material modeled by 178 elementary currents.  
 
Number of elementary currents 50 100 150 200 300 400 
Average execution time [ms] 110 190 290 470 980 1600 
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